Holomorphic mappings of Riemann surfaces with handles
Project/Area Number |
19540187
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Yamaguchi University |
Principal Investigator |
MASUMOTO Makoto Yamaguchi University, 大学院・理工学研究科, 教授 (50173761)
|
Co-Investigator(Kenkyū-buntansha) |
SHIBA Masakazu 広島大学, 名誉教授 (70025469)
YAMADA Akira 東京学芸大学, 教育学部, 教授 (60126331)
HATAYA Yasushi 山口大学, 大学院・理工学研究科, 助教 (20294621)
KIUCHI Isao 山口大学, 大学院・理工学研究科, 教授 (30271076)
KATO Takao 山口大学, 名誉教授 (10016157)
YANAGIHARA Hiroshi 山口大学, 大学院・理工学研究科, 准教授 (30200538)
|
Project Period (FY) |
2007 – 2009
|
Project Status |
Completed (Fiscal Year 2009)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2009: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2008: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2007: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | リーマン面 / 正則写像 / 等角写像 / 極値的長さ / 穴あきトーラス / 単葉関数 / 極値截線写像 / 代数曲線 |
Research Abstract |
A Riemann surface is a surface at every point of which angles are defined. It is obtained from tori with holes together with a plane domain by identifying boundaries appropriately. The number of tori is called the genus of the Riemann surface. If you want to embed a Riemann surface R of genus one into a general Riemann surface S, that is, if you want to draw a map of R on S, then you will need some "space" on S. In the present research we introduce a method of measuring the space and establish a theorem analogous to the Koebe one-quarter theorem, a classical theorem in function theory on plane domains.
|
Report
(4 results)
Research Products
(70 results)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[Presentation] 再生核と不等式2009
Author(s)
山田 陽
Organizer
複素解析の発展とその応用
Place of Presentation
群馬県桐生市市民文化会館
Year and Date
2009-01-24
Related Report
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[Presentation] ゼータ関数の性質2008
Author(s)
木内功
Organizer
平成19年度日本数学会中国・四国支部例会
Place of Presentation
山口大学
Year and Date
2008-01-27
Related Report
-
-
-
-
-
-
-