Coverings of algebraic surfaces and the formula for invariants of its Galois closures
Project/Area Number |
19740022
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Single-year Grants |
Research Field |
Algebra
|
Research Institution | Ube National College of Technology |
Principal Investigator |
ISHIDA Hirotaka Ube National College of Technology, 一般科, 准教授 (30435458)
|
Project Period (FY) |
2007 – 2008
|
Project Status |
Completed (Fiscal Year 2008)
|
Budget Amount *help |
¥1,250,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥150,000)
Fiscal Year 2008: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2007: ¥600,000 (Direct Cost: ¥600,000)
|
Keywords | 代数幾何 / 代数曲面 / 曲線族 / ガロア被覆 / 曲面特異点 / 不変量 |
Research Abstract |
複素代数曲面の研究において,代数曲面の2重被覆の理論は重要な役割を果たしてきた.この理論と同様の理論を被覆次数が3以上の代数曲面の被覆について構築を試みた.その成果として,3次対称群被覆,双2重被覆や巡回4重被覆のデータの表し方を整理し,特異点解消プロセスと不変量公式を与えた.また,被覆の理論を利用し,3重被覆の分岐因子や有理曲面上の特異曲線に関する具体的問題を解決することが出来た.
|
Report
(3 results)
Research Products
(14 results)