• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New developments of automorphy of Galois representations and Serre conjecture.

Research Project

Project/Area Number 19H01778
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionTohoku University

Principal Investigator

Yamauchi Takuya  東北大学, 理学研究科, 准教授 (90432707)

Co-Investigator(Kenkyū-buntansha) 都築 暢夫  東北大学, 理学研究科, 教授 (10253048)
山名 俊介  大阪公立大学, 大学院理学研究科, 教授 (50633301)
宮内 通孝  岡山大学, 教育学域, 准教授 (70533644)
Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥15,990,000 (Direct Cost: ¥12,300,000、Indirect Cost: ¥3,690,000)
Fiscal Year 2023: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2022: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2021: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2020: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2019: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Keywordsガロア表現 / 保型表現 / ジーゲル保型形式 / Dwork族 / アーサー予想 / 変形理論 / 保型性問題 / セール予想 / 法p保型表現 / ジーゲル形式 / 局所法2ガロア表現 / 局所2進ガロア表現 / テータ作用素 / 法pジーゲル形式 / テータサイクル
Outline of Research at the Start

現代数学の発展により、以前までなら個々に扱っていた対象を抽象化することで一塊にして扱い、その普遍的性質を問うことが可能になった。本研究テーマはガロア表現と呼ばれる代数的対象と保型表現と呼ばれる解析的対象の間の対応を問う問題であり、その対応を明確にするには各分野のさらなる発展も必須であり、広い分野に影響を与えるものである。その点では問題を解くという動機を除いても十分に意義がある。

Outline of Final Research Achievements

In order to first formulate the Sale Conjecture for the problem of the coercivity of Galois representations, which is the theme of this research, the weight part was formulated successfully in the case of a high dimensional algebraic group called GSp4. This is to identify the weight of the corresponding preserving form of a preserving Galois representation. We formulated the potential cohomology problem and deformation theory by developing a technique to reduce it to Barsochte deformations. We also gave a generalization of the so-called Sale weight to the case of GSp4, where the weight is explicitly determined from the bifurcation data by a detailed computation of Galois cohomology. I also proved the preservation of modulo Galois representations in the case of Dwork families. He also gave other results on the theory of preserving representations, such as composition problems and equidistribution problems.

Academic Significance and Societal Importance of the Research Achievements

ガロア表現の保型性問題を解決するためには問題そのものよりも、その周辺の数学発展が高い水準で発展させることが重要な問題となる。具体的にはガロア表現のp進ホッジ論的性質、保型表現の分類や構成、等の発展が望まれる。また,保型的であるガロア表現を既存理論に見合うだけ豊富に構成することも重要である。成果は前半の重さの対応(局所的なラングランズ対応の一部)と上記後半の内容に対して寄与・意義があると考えている。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • Research Products

    (32 results)

All 2024 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (6 results) Journal Article (13 results) (of which Int'l Joint Research: 7 results,  Peer Reviewed: 13 results,  Open Access: 1 results) Presentation (11 results) (of which Int'l Joint Research: 3 results,  Invited: 11 results) Funded Workshop (2 results)

  • [Int'l Joint Research] Toronto university/department of mathematics(カナダ)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Toronto university/department of mathematics(カナダ)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Postech/department of mathematics(韓国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Toronto university/department of mathematics(カナダ)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] University of Toronto(カナダ)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] KIAS(韓国)

    • Related Report
      2019 Annual Research Report
  • [Journal Article] Equidistribution theorems for holomorphic Siegel cusp forms of general degree: the level aspect2024

    • Author(s)
      H-H. Kim, S. Wakatsuki, and T. Yamauchi
    • Journal Title

      Algebra and Number Theory

      Volume: 未定

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Automorphy of mod 2 Galois representations associated to certain genus 2 curves over totally real fields2024

    • Author(s)
      A. Ghitza and T. Yamauchi
    • Journal Title

      Journal de Theorie des Nombres de Bordeaux.

      Volume: 未定

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Transfers of some Hecke elements for possibly ramified base change in GL_n,2024

    • Author(s)
      Takuya Yamauchi
    • Journal Title

      Kyoto Journal of Mathematics

      Volume: -

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Isogeny graphs on superspecial abelian varieties: eigenvalues and connection to Bruhat?Tits buildings2023

    • Author(s)
      Aikawa Yusuke、Tanaka Ryokichi、Yamauchi Takuya
    • Journal Title

      Canadian Journal of Mathematics

      Volume: 0 Issue: 6 Pages: 1-26

    • DOI

      10.4153/s0008414x23000676

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] The weight reduction of modp Siegel modular forms for GSp4 and theta operators2023

    • Author(s)
      Takuya Yamauchi
    • Journal Title

      Mathematische Zeitschrift

      Volume: 303 Issue: 1

    • DOI

      10.1007/s00209-022-03153-x

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Harder's conjecture I2023

    • Author(s)
      ATOBE Hiraku、CHIDA Masataka、IBUKIYAMA Tomoyoshi、KATSURADA Hidenori、YAMAUCHI Takuya
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 75 Issue: 4 Pages: 1339-1408

    • DOI

      10.2969/jmsj/87988798

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Period of the Ikeda type lift for the exceptional group of type E7,3.2022

    • Author(s)
      Katsurada, Hidenori; Kim, Henry H.; Yamauchi, Takuya
    • Journal Title

      Mathematische Zeitschrift

      Volume: 302 Issue: 1 Pages: 559-588

    • DOI

      10.1007/s00209-022-03057-w

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Derivatives of Eisenstein series of weight 2 and intersections of modular correspondences2022

    • Author(s)
      Sungmun Cho, Shunsuke Yamana, Takuya Yamauchi
    • Journal Title

      Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg

      Volume: 92 Issue: 1 Pages: 27-52

    • DOI

      10.1007/s12188-022-00256-4

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A remark on conductor, depth and principal congruence subgroups2022

    • Author(s)
      Miyauchi Michitaka and Takuya Yamauchi
    • Journal Title

      J. Algebra

      Volume: 592 Pages: 424-434

    • DOI

      10.1016/j.jalgebra.2021.10.032

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Congruences of Siegel Eisenstein series of degree two2021

    • Author(s)
      Takuya Yamauchi
    • Journal Title

      Manuscripta Math

      Volume: 166 Issue: 3-4 Pages: 589-603

    • DOI

      10.1007/s00229-020-01256-5

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A reformulation of the Siegel series and intersection numbers2020

    • Author(s)
      Sungmun Cho and Takuya Yamauchi
    • Journal Title

      Mathematische Annalen

      Volume: 377 Issue: 3-4 Pages: 1757-1826

    • DOI

      10.1007/s00208-020-01999-2

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] フィールズ賞受賞者紹介 Akshay Venkatesh氏の業績 : 等質空間上の力学系とその整数論への応用2020

    • Author(s)
      山内卓也
    • Journal Title

      数学 / 日本数学会 編

      Volume: 72 Pages: 51-66

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Non-vanishing of Miyawaki type lifts2019

    • Author(s)
      Kim, Henry H.; Yamauchi, Takuya
    • Journal Title

      Abh. Math. Semin. Univ. Hambg.

      Volume: 89, no.2 Issue: 2 Pages: 117-134

    • DOI

      10.1007/s12188-019-00207-6

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] 超特殊アーベル多様体上の同種グラフ: 固有値, Bruhat-Tits ビルディングおよびProperty (T)2024

    • Author(s)
      山内卓也
    • Organizer
      保型表現の解析的・数論的研究(RIMS)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Automorphy of mod 2 Galois representations associated to the quintic Dwork family and reciprocity of some quintic trinomials2023

    • Author(s)
      山内卓也
    • Organizer
      フロリダ大学におけるセミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 超特殊アーベル多様体上の同種グラフ: 固有値, Bruhat-Tits ビルディングおよびProperty (T)2023

    • Author(s)
      山内卓也
    • Organizer
      情報数学セミナープログラム (於 東京大学)
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 一般次数の正則ジーゲルカスプ形式に関する等分布定理について2023

    • Author(s)
      山内卓也
    • Organizer
      「保型表現の解析的・数論的研究」(RIMS)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] families of extensions2023

    • Author(s)
      山内卓也
    • Organizer
      Emerton-Gee stackの勉強会
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 多項式の相互法則とガロア表現2022

    • Author(s)
      山内卓也
    • Organizer
      奈良女子大学談話会
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 正則対称領域上の正則保型形式の成す次数付き環の有限性について2022

    • Author(s)
      山内卓也
    • Organizer
      仙台保型形式小集会における招待講演
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 5 次 Dwork 族に付随する法2ガロア表現の保型性とある 5 次 3 項方程式の相互法則について2021

    • Author(s)
      山内卓也
    • Organizer
      「代数的整数論とその周辺」(RIMS),
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 5次Dwork族に付随するガロア表現のmod 2 reciprocityとある3項5次多項式のreciprocityの関係について2021

    • Author(s)
      山内卓也
    • Organizer
      東北大学整数論セミナー
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Automorphy of mod 2 Galois representations associated to the quintic Dwork family and reciprocity of some quintic trinomials2020

    • Author(s)
      山内卓也
    • Organizer
      コロンビア大学(in New York city)における招待講演(オンライン講演)
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 代数体上定義された代数多様体のHasse-Weil 予想の最近の進展について2020

    • Author(s)
      山内卓也
    • Organizer
      新潟代数セミナーにおける招待講演
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Funded Workshop] RIMS共同研究(公開型)「保型形式,保型表現, ガロア表現とその周辺」2021

    • Related Report
      2020 Annual Research Report
  • [Funded Workshop] IMS conference "Analytic, geometric and p-adic aspects of automorphic forms and L-functions"2020

    • Related Report
      2019 Annual Research Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi