Project/Area Number |
19H01778
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 11010:Algebra-related
|
Research Institution | Tohoku University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
都築 暢夫 東北大学, 理学研究科, 教授 (10253048)
山名 俊介 大阪公立大学, 大学院理学研究科, 教授 (50633301)
宮内 通孝 岡山大学, 教育学域, 准教授 (70533644)
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥15,990,000 (Direct Cost: ¥12,300,000、Indirect Cost: ¥3,690,000)
Fiscal Year 2023: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2022: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2021: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2020: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2019: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
|
Keywords | ガロア表現 / 保型表現 / ジーゲル保型形式 / Dwork族 / アーサー予想 / 変形理論 / 保型性問題 / セール予想 / 法p保型表現 / ジーゲル形式 / 局所法2ガロア表現 / 局所2進ガロア表現 / テータ作用素 / 法pジーゲル形式 / テータサイクル |
Outline of Research at the Start |
現代数学の発展により、以前までなら個々に扱っていた対象を抽象化することで一塊にして扱い、その普遍的性質を問うことが可能になった。本研究テーマはガロア表現と呼ばれる代数的対象と保型表現と呼ばれる解析的対象の間の対応を問う問題であり、その対応を明確にするには各分野のさらなる発展も必須であり、広い分野に影響を与えるものである。その点では問題を解くという動機を除いても十分に意義がある。
|
Outline of Final Research Achievements |
In order to first formulate the Sale Conjecture for the problem of the coercivity of Galois representations, which is the theme of this research, the weight part was formulated successfully in the case of a high dimensional algebraic group called GSp4. This is to identify the weight of the corresponding preserving form of a preserving Galois representation. We formulated the potential cohomology problem and deformation theory by developing a technique to reduce it to Barsochte deformations. We also gave a generalization of the so-called Sale weight to the case of GSp4, where the weight is explicitly determined from the bifurcation data by a detailed computation of Galois cohomology. I also proved the preservation of modulo Galois representations in the case of Dwork families. He also gave other results on the theory of preserving representations, such as composition problems and equidistribution problems.
|
Academic Significance and Societal Importance of the Research Achievements |
ガロア表現の保型性問題を解決するためには問題そのものよりも、その周辺の数学発展が高い水準で発展させることが重要な問題となる。具体的にはガロア表現のp進ホッジ論的性質、保型表現の分類や構成、等の発展が望まれる。また,保型的であるガロア表現を既存理論に見合うだけ豊富に構成することも重要である。成果は前半の重さの対応(局所的なラングランズ対応の一部)と上記後半の内容に対して寄与・意義があると考えている。
|