• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Global structure of solutions for differential equations of singular perturbation type and exact WKB analysis

Research Project

Project/Area Number 19H01794
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionDoshisha University

Principal Investigator

TAKEI Yoshitsugu  同志社大学, 理工学部, 教授 (00212019)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥8,710,000 (Direct Cost: ¥6,700,000、Indirect Cost: ¥2,010,000)
Fiscal Year 2023: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords関数方程式論 / 漸近解析 / 代数解析 / 完全WKB解析 / パンルヴェ方程式 / 超幾何函数 / ホロノミック系 / ヴォロス係数 / 微分差分方程式系 / 隣接関係式 / 積分表示式 / ボロス係数 / 微分方程式 / 差分方程式 / 超幾何方程式 / 単純極 / 時間依存シュレディンガー方程式 / 確率微分方程式 / ファインマン・カッツの定理 / 非遺伝性変わり点 / ベッセル関数 / ストークス幾何 / 仮想的変わり点 / リッカチ方程式 / インスタントン解 / ボレル総和法
Outline of Research at the Start

特異摂動型微分方程式が有するWKB解やインスタントン解と呼ばれる形式解に、ボレル総和法を用いて意味付けを行うのが完全WKB解析である。完全WKB解析を応用し、微分方程式の解の大域構造を具体的に記述することが本研究の目的である。楕円函数への変換を利用してパンルヴェ方程式の場合にまずこれを実現し、さらに関連する線型偏微分方程式系や差分方程式の完全WKB解析の理論整備にも本質的な進展をもたらすことを目指す。

Outline of Final Research Achievements

To establish the exact WKB analysis for systems of differential equations including nonlinear equations and difference equations we study Painleve equations and hypergeometric systems from the viewpoint of the exact WKB analysis. Consequently the problem of analytic interpretation of instanton solutions for Riccati equations, which can be considered as prototype of Painleve equations, is solved and further the following new results are obtained: the structure of Stokes geometry of the difference equation for Bessel functions is clarified, Voros coefficients of Weber functions are determined and integral representations of Gauss' hypergeometric functions are derived by utilizing a system of differential-difference equations. It is also shown that WKB-type formal solutions of initial value problems for time-dependent Schrodinger equations can be analytically interpreted in several simple cases through stochastic differential equations.

Academic Significance and Societal Importance of the Research Achievements

完全WKB解析が非線型や差分方程式も含む一般の微分方程式系に拡張されれば、その解の大域解析が大きく進展するものと期待され、本研究の研究成果はそれに向けての第一歩と考えられる。例えば、リッカチ方程式のインスタントン解の意味付けの問題の解決はインスタントン解を用いた非線型方程式の大域解析の可能性の証左となる成果であり、ヴォロス係数の決定や積分表示式の導出に連立の微分差分方程式系が有効に用いられたことは差分方程式の完全WKB解析の将来性を保証する。さらに、時間依存シュレディンガー方程式の初期値問題のWKB型の形式解に関する結果は、完全WKB解析と確率微分方程式の思わぬ関連性を示唆している。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • Research Products

    (13 results)

All 2023 2022 2021 2020 2019

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (9 results) (of which Int'l Joint Research: 8 results,  Invited: 9 results) Book (1 results)

  • [Journal Article] On the Stokes Geometry of Perturbed Tangential Pearcey Systems2021

    • Author(s)
      Hirose Sampei、Kawai Takahiro、Sasaki Shinji、Takei Yoshitsugu
    • Journal Title

      Publications of the Research Institute for Mathematical Sciences

      Volume: 57 Issue: 3 Pages: 727-754

    • DOI

      10.4171/prims/57-3-1

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Riccati Equations Revisited: Linearization and Analytic Interpretation of Instanton-Type Solutions2020

    • Author(s)
      Takei Yoshitsugu
    • Journal Title

      Complex Analysis and Operator Theory

      Volume: 14 Issue: 8

    • DOI

      10.1007/s11785-020-01033-y

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the instanton-type expansions for Painleve transcendents and elliptic functions2019

    • Author(s)
      Takei Yoshitsugu
    • Journal Title

      Complex Differential and Difference Equations (De Gruyter Proceedings in Mathematics)

      Volume: - Pages: 365-378

    • DOI

      10.1515/9783110611427-014

    • ISBN
      9783110611427
    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Presentation] On the exact WKB analysis for difference equations2023

    • Author(s)
      Yoshitsugu Takei
    • Organizer
      Complex Differential and Difference Equations II(ベドレボ数学研究・会議センター, ポーランド)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the exact WKB analysis for difference equations2023

    • Author(s)
      Yoshitsugu Takei
    • Organizer
      Frontiers in Nonlinear Differential Equations and Stokes Phenomena(沖縄科学技術大学院大学(OIST), 沖縄県)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the exact WKB analysis for difference equations2023

    • Author(s)
      Yoshitsugu Takei
    • Organizer
      Various Problems in Microlocal Analysis and Asymptotic Analysis(京都大学数理解析研究所, 京都市)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On two-parameter instanton-type solutions of Painleve equations and their analytic interpretation2022

    • Author(s)
      Yoshitsugu Takei
    • Organizer
      Physical resurgence: On quantum, gauge, and stringy(ケンブリッジ大学ニュートン研究所, 英国)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Comparison between WKB solutions and convergent solutions at a regular singular point of simple pole type via the confluence2022

    • Author(s)
      Yoshitsugu Takei
    • Organizer
      Prospects in microlocal analysis and asymptotic analysis(京都大学数理解析研究所, 京都市)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Global study of differential equations via the exact WKB --- from Schrodinger equations to Painleve equations,2021

    • Author(s)
      Yoshitsugu Takei
    • Organizer
      Applicable resurgent asymptotics: towards a universal theory (オンライン, ケンブリッジ大学ニュートン研究所, 英国)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the instanton-type formal solutions of Painleve equations2021

    • Author(s)
      Yoshitsugu Takei
    • Organizer
      Exact WKB Analysis, Microlocal Analysis, Painleve Equations and Related Topics (オンライン, 京都大学数理解析研究所, 京都市)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 微分方程式の完全WKB解析について --- 複素解析と漸近解析の一つの接点 ---2021

    • Author(s)
      竹井義次
    • Organizer
      第19回岡シンポジウム (オンライン, 奈良女子大学, 奈良市)
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] On crossing phenomenon of three ordinary Stokes curves for third-order ordinary differential equations2019

    • Author(s)
      Sampei Hirose, Takahiro Kawai and Yoshitsugu Takei
    • Organizer
      RIMS Conference "Microloccal Analysis and Asymptotic Analysis"
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Book] Complex Differential and Difference Equations (De Gruyter Proceedings in Mathematics)2019

    • Author(s)
      Galina Filipuk, Alberto Lastra, Slawomir Michalik, Yoshitsugu Takei and Henryk Zoladek (eds.)
    • Publisher
      De Gruyter
    • ISBN
      9783110609523
    • Related Report
      2019 Annual Research Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi