• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Elucidation of weak null structure of strongly hyperbolic systems

Research Project

Project/Area Number 19H01795
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionHokkaido University

Principal Investigator

Kubo Hideo  北海道大学, 理学研究院, 教授 (50283346)

Co-Investigator(Kenkyū-buntansha) 加藤 正和  室蘭工業大学, 大学院工学研究科, 講師 (30526679)
津田谷 公利  弘前大学, 理工学研究科, 教授 (60250411)
若狭 恭平  釧路工業高等専門学校, 創造工学科, 講師 (60783404)
Yordanov Borislav  北海道大学, 高等教育推進機構, 助教 (50839199)
Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥15,340,000 (Direct Cost: ¥11,800,000、Indirect Cost: ¥3,540,000)
Fiscal Year 2023: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2022: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2021: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2020: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2019: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Keywords双曲型方程式 / 非線型摂動 / 弱零条件 / 大域挙動 / 漸近解析 / 双曲方程式
Outline of Research at the Start

強双曲型方程式に対する2次の非線型摂動を研究対象とする。非線型波動方程式に対しては,その解の大域挙動を解析するにあたり,零枠と呼ばれる座標系やそれに付随する解の時間減衰度を基準とした解の分解などの解析手法が整備されてきた。そこで,これらの手法を強双曲型の方程式系に対しても適用できる形式に拡張し,解の主要部が満たす偏微分方程式系を導出し,その大域可解性に係る条件として弱零条件を導入する。更に,その条件の下で真空中のアインシュタイン方程式のBSSN形式における大域可解性を示す。また,物質場を伴うアインシュタイン方程式についても解析を進め,強重力場を発生源とする時空間における特異性を調べる。

Outline of Final Research Achievements

The Einstein equation describes the geometry of our universe without distinguishing space and time in a standard form. But such a formulation is not convenient to find out the time evolution of our universe, so that a special coordinate system, that is called 1+3 formalism, was introduced and the Einstein equation is reformulated as an evolution equation in numerical relativity. In this research we examined the possibility to develop the general theory in 3+1 formalism and considered the global existence in time for nonlinear wave equations with singular variable coefficient like the Schwarzschild spacetime.

Academic Significance and Societal Importance of the Research Achievements

本研究を通して、3+1形式と呼ばれる座標系はただ一つに決まるものではなく、時間軸の設定を適切に行わなければ、アインシュタイン方程式を時間発展方程式とみることはできないことが明らかになった。具体的には、ブラックホールに対応するシュバルツシルド時空などでは適切な時間軸の選び方が知られているが、一般論を展開するには解決すべき課題があることがわかった。一方で、特異性をもつ変数係数の波動方程式の解析ではレリッヒの不等式が有効であることを明らかにすることができた。これにより、ブラックホールに近い初期状態からこの宇宙がどのように時間発展するのかを解析できる可能性がみえてきた。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • Research Products

    (29 results)

All 2024 2023 2022 2021 2020 2019

All Journal Article (8 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 8 results) Presentation (16 results) (of which Int'l Joint Research: 6 results,  Invited: 15 results) Book (1 results) Funded Workshop (4 results)

  • [Journal Article] Remarks on Blow up of Solutions of Nonlinear Wave Equations in Friedmann-Lemaitre-Robertson-Walker Spacetime2024

    • Author(s)
      Kimitoshi Tsutaya and Yuta Wakasugi
    • Journal Title

      Mathematical Physics and Its Interactions, Springer Proceedings in Mathematics & Statistics

      Volume: 451 Pages: 181-197

    • DOI

      10.1007/978-981-97-0364-7_6

    • ISBN
      9789819703630, 9789819703647
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Global solvability for nonlinear wave equations with singular potential2023

    • Author(s)
      Vladimir Georgiev and Hideo Kubo
    • Journal Title

      Journal of Differential Equations

      Volume: 375 Pages: 514-537

    • DOI

      10.1016/j.jde.2023.08.014

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On the Cauchy problem for the nonlinear wave equation with damping and potential2022

    • Author(s)
      Masakazu Kato, Hideo Kubo
    • Journal Title

      “Harmonic Analysis and Partial Differential Equations”, M. Ruzhansky, J. Wirth (eds.), Trends in Mathematics, Springer Nature Switzerland

      Volume: - Pages: 45-61

    • DOI

      10.1007/978-3-031-24311-0_3

    • ISBN
      9783031243103, 9783031243110
    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the Rellich Type Inequality for Schroedinger Operators with Singular Potential2022

    • Author(s)
      Georgiev Vladimir、Kubo Hideo
    • Journal Title

      Harmonic Analysis and Partial Differential Equations

      Volume: Trends in Mathematics Pages: 77-89

    • DOI

      10.1007/978-3-031-24311-0_5

    • ISBN
      9783031243103, 9783031243110
    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the critical decay for the wave equation with a cubic convolution in 3D2021

    • Author(s)
      Tanaka Tomoyuki、Wakasa Kyouhei
    • Journal Title

      Discrete and Continuous Dynamical Systems

      Volume: 41 Issue: 10 Pages: 4545-4566

    • DOI

      10.3934/dcds.2021048

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Critical exponent for the wave equation with a time-dependent scale invariant damping and a cubic convolution2021

    • Author(s)
      Masahiro Ikeda, Tomoyuki Tanaka and Kyohei Wakasa
    • Journal Title

      Journal of Differential Equations

      Volume: 270 Pages: 916-946

    • DOI

      10.1016/j.jde.2020.08.047

    • Related Report
      2020 Annual Research Report 2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Blow-up for Strauss type wave equation with damping and potential2021

    • Author(s)
      Dai Wei、Kubo Hideo、Sobajima Motohiro
    • Journal Title

      Nonlinear Analysis: Real World Applications

      Volume: 57 Pages: 103195-103195

    • DOI

      10.1016/j.nonrwa.2020.103195

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Small data blow-up for the wave equation with a time-dependent scale invariant damping and a cubic convolution for slowly decaying initial data2020

    • Author(s)
      Masahiro Ikeda, Tomoyuki Tanaka and Kyohei Wakasa
    • Journal Title

      Nonlinear Analysis

      Volume: 200 Pages: 112057-112057

    • DOI

      10.1016/j.na.2020.112057

    • Related Report
      2020 Annual Research Report 2019 Annual Research Report
    • Peer Reviewed
  • [Presentation] 弱い消散項を伴う非線型波動方程式の解の時間大域存在と爆発について2024

    • Author(s)
      加藤正和
    • Organizer
      室蘭工業大学数理科学談話会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Global existence for nonlinear wave equations perturbed by the inverse-square potential below the Rellich constant2023

    • Author(s)
      久保英夫
    • Organizer
      第18回浜松偏微分方程式研究集会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] On the critical decay for the wave equation with a cubic convolution in three space dimensions2023

    • Author(s)
      若狭恭平
    • Organizer
      Workshop on Nonlinear Hyperbolic PDEs
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 消散項とポテンシャル項を伴う非線型波動方程式の臨界指数について2023

    • Author(s)
      加藤正和
    • Organizer
      One day workshop on Nonlinear wave equations
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Global existence and blow-up for nonlinear wave equations with inverse-square potential2023

    • Author(s)
      久保英夫
    • Organizer
      第24回北東数学解析研究会
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Global existence for semilinear wave equations with potential of inverse-square type2022

    • Author(s)
      久保英夫
    • Organizer
      応用解析研究会
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the Rellich type inequality for Schroedinger operators with potential of inverse-square type2022

    • Author(s)
      久保英夫
    • Organizer
      Mathematical Analysis of Nonlinear Dispersive and Wave Equations
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 逆二乗冪型ポテンシャルを伴う非線型波動方程式の解析 (PartⅠ・Ⅱ))2022

    • Author(s)
      久保英夫
    • Organizer
      第43回発展方程式若手セミナー
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 重み付きRellich 型不等式とその応用2022

    • Author(s)
      久保英夫
    • Organizer
      非線型偏微分方程式と走化性
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] On the effect of slowly decreasing initial data for nonlinear wave equations with damping and potential in the scaling critical regime2021

    • Author(s)
      久保英夫
    • Organizer
      13th ISAAC Congress 2021
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 低階項を伴う非線型波動方程式の初期値問題について2021

    • Author(s)
      久保英夫
    • Organizer
      東京大学解析学火曜セミナー
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] On the nonlinear wave equation with lower order terms2021

    • Author(s)
      久保英夫
    • Organizer
      Seminar of Applications of Differential Equations in Sciences
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the semilinear wave equation with lower order terms2020

    • Author(s)
      久保英夫
    • Organizer
      第37回 九州における偏微分方程式研究集会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 非線型波動方程式に対する幾何学的および双対的アプローチ2020

    • Author(s)
      久保英夫
    • Organizer
      9回室蘭非線形解析研究会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Asymptotic behavior for the nonlinear damped wave equation with a positive potential2019

    • Author(s)
      久保英夫
    • Organizer
      信州大学偏微分方程式研究集会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Critical exponent for nonlinear damped wave equations with non-negative potential in 3D2019

    • Author(s)
      久保英夫
    • Organizer
      偏微分方程式セミナー
    • Related Report
      2019 Annual Research Report
  • [Book] The role of metrics in the theory of partial differential equations, Advanced Studies in Pure Mathematics, 852020

    • Author(s)
      Y. Giga, N. Hamamuki, H. Kuroda, T. Ozawa, H. Kubo
    • Total Pages
      543
    • Publisher
      Mathematical Society of Japan
    • ISBN
      9784864970907
    • Related Report
      2020 Annual Research Report
  • [Funded Workshop] 第48回偏微分方程式論札幌シンポジウム2023

    • Related Report
      2023 Annual Research Report
  • [Funded Workshop] Workshop on Nonlinear Hyperbolic PDEs2023

    • Related Report
      2023 Annual Research Report
  • [Funded Workshop] 第47回偏微分方程式論札幌シンポジウム2022

    • Related Report
      2022 Annual Research Report
  • [Funded Workshop] 第21回北東数学解析研究会2020

    • Related Report
      2019 Annual Research Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi