Research on photoelectrochemical energy storage devices
Project/Area Number |
19H02808
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 36020:Energy-related chemistry
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥17,680,000 (Direct Cost: ¥13,600,000、Indirect Cost: ¥4,080,000)
Fiscal Year 2021: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2020: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥9,230,000 (Direct Cost: ¥7,100,000、Indirect Cost: ¥2,130,000)
|
Keywords | 光電気化学材料 / インターカレーション / 全固体電池 / リチウムイオン電池 / インターカレーション電極 / リチウム電池 / 電気化学材料 / 光電気化学 |
Outline of Research at the Start |
光励起された半導体電極内に可動イオンが脱挿入される「光イオニクス現象」で動作する光蓄電デバイスの可能性を実証する.これまで,電極/電解液界面で生じる光腐食等の副反応により,十分な光充電特性が得られておらず,現象解析も進んでいない.本研究では,電気化学安定性に優れる固体電解質を用いて全固体型デバイスを構築し,固体固体界面での光イオニクス現象を開拓する.さらに,光イオニクス現象の支配因子を界面構造解析から明らかにすることで,発電および蓄電機能を兼ね備えた物質探索に展開する.
|
Outline of Final Research Achievements |
All-solid-state photoionic devices have been constructed by thin-film synthesis methods, aiming to operate energy storage by photo/chemical energy conversion (charging) and energy release by chemical/electrical energy conversion (discharging) in a single device. Photoelectrochemical measurements and interfacial structure analysis have successfully demonstrated that lithium desertion (charge) from a n-type semiconductor cathode proceed under photo irradiation. Furthermore, the photocharging and discharging reactions have been highly reversible without the decomposition reaction caused by photoirradiation. Our findings have clarified the possibility of the photoionics phenomena for energy storage devices by making an all-solid-state device using a solid electrolyte.
|
Academic Significance and Societal Importance of the Research Achievements |
光イオニクス現象の基礎学理を半導体界面科学(光励起,電荷移動,イオン拡散)から構築できたものと考え,固体イオニクスの新領域開拓としての学問的意義が高い.光/化学エネルギーの直接変換による蓄電が可能となれば,「畜電池は電力によって充電される」という常識を覆す新しい電池の誕生が期待できる.社会的な意義としては,エネルギーハーベスティング技術へ展開があり,半導体集積回路と同一基板上に自立電源としての光蓄電デバイスを組み込むことで,IoTデバイスを超小型化させることで,Society 5.0(超スマート社会)の実現に貢献できる.
|
Report
(4 results)
Research Products
(15 results)