Project/Area Number |
19H04192
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 61050:Intelligent robotics-related
|
Research Institution | Meiji University |
Principal Investigator |
Ozawa Ryuta 明治大学, 理工学部, 専任教授 (40368006)
|
Co-Investigator(Kenkyū-buntansha) |
岡田 志麻 立命館大学, 理工学部, 教授 (40551560)
福永 修一 東京都立産業技術高等専門学校, ものづくり工学科, 准教授 (70402518)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2021: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2020: ¥6,630,000 (Direct Cost: ¥5,100,000、Indirect Cost: ¥1,530,000)
Fiscal Year 2019: ¥7,150,000 (Direct Cost: ¥5,500,000、Indirect Cost: ¥1,650,000)
|
Keywords | 筋電モーメント / ロボットハンド / 筋電計測装置 / 運動識別 / 筋電センサ / 把持動作識別 / 筋電位 / 運動推定 / 義手制御 / 表面筋電位 / 義手 / 筋電計測 / 筋電義手 / 学習 |
Outline of Research at the Start |
人間の筋肉が動く際、筋電位を発生する。この筋電位から人間の運動を識別するための様々な研究が行われてきた。本研究では、この筋電位を筋電センサの取り付け位置情報で重みづけした筋電モーメントという新しい量を用いた運動識別方法を提案する。特に、この筋電モーメントの基本的な特性の解析、計測するための計測装置の構築、計測された筋電モーメントから運動識別を行うための学習方法の3つの方法を軸に新しいシステムを開発し、その有効性の検証を行っていく。
|
Outline of Final Research Achievements |
This study proposed new features for estimating hand and wrist motion with multi-point surface muscle electrodes. The features, named "myoelectric moments," are based on the position of the myoelectric electrodes weighted by the potential. We analyzed the features with the electrodes attached around the forearm during multiple hand postures and wrist movements. Then, we found that the myoelectric moments intuitively interpret the relationship between the features and the motions. We also employed machine learning methods to discriminate motion from these features. In addition, we developed a wearable multi-point muscle electrode to facilitate myoelectric measurement at multiple points. Furthermore, we developed prosthetic and robotic hands for the applications of myoelectric moments.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、前腕などに取り付けた複数の筋電極から運動を推定するための新しい特徴量を提案した。この手法は、筋電義手や新しい入力デバイスを構成する際に重要な基礎技術となる。ここでは、この新しい特徴量が運動の識別を行うために、直観的でわかりやすい特徴を示し、機械学習などで動作識別が行えることを示した。また、計測するための筋電計測システムと応用先の義手などの開発も合わせて行った。
|