• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Semiparametric inference for multivariate fractional processes and its applications

Research Project

Project/Area Number 19K01590
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 07030:Economic statistics-related
Research InstitutionOkayama University

Principal Investigator

Narukawa Masaki  岡山大学, 社会文化科学学域, 准教授 (30588489)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords実数和分過程 / 多変量時系列 / セミパラメトリック推定 / Taper / 共和分 / 実数共和分過程 / 共和分検定 / 長期記憶 / セミパラメトリック推測
Outline of Research at the Start

本研究では多変量実数和分過程に従う時系列を対象として,変数間の長期相互関係を明らかにする上で有用なアプローチである定常・非定常の実数共和分分析や頻繁に直面する困難な問題である見せかけの(疑似)長期記憶性を包括的に扱える一般的な枠組みの下でより実用性の高いセミパラメトリックな推測理論を構築することを目指しており,現実の経済・ファイナンスデータ分析へと応用することで新たな知見を引き出すことが期待される.

Outline of Final Research Achievements

In this research, we proposed a two-step approach to semiparametrically estimate fractional cointegration with the fractionally integrated parameters in potentially nonstationary multivariate time series by combining the narrow-band least squares method and the multivariate local Whittle method with the efficient tapering incorporated. Furthermore, a Hausman-type test statistic was constructed from the multivariate local Whittle likelihood to detect the existence of fractional cointegration. In addition to deriving the asymptotic properties of the estimators and the test statistic, their finite sample performance was investigated by numerical simulation.

Academic Significance and Societal Importance of the Research Achievements

多変量時系列解析において実数共和分分析は有用かつ魅力的な手法の一つであるが,強弱双方の実数共和分関係や一般的な変量数を想定した既存研究は少ない上にほとんどが制約的な側面を有している状況下で,単一方程式モデルに基づいているものの計算負荷が比較的抑えられ効率性も保ちつつ安定したセミパラメトリック推測を行えうる実用性の高い頑健なアプローチを提案している本研究はこの分析に新たな進展をもたらすと考えられる.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (4 results)

All 2024 2022 2021 2019

All Journal Article (2 results) (of which Peer Reviewed: 1 results) Presentation (2 results)

  • [Journal Article] Tapered semiparametric estimation of fractional cointegration2024

    • Author(s)
      Narukawa, M
    • Journal Title

      岡山大学経済学会Discussion Paper

      Volume: I-117 Pages: 1-26

    • Related Report
      2023 Annual Research Report
  • [Journal Article] Efficient tapered local Whittle estimation of multivariate fractional processes2021

    • Author(s)
      Narukawa, M.
    • Journal Title

      Journal of Statistical Planning and Inference

      Volume: 215 Pages: 234-256

    • DOI

      10.1016/j.jspi.2021.03.005

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] 最大効率Taper を用いた実数共和分分析について2022

    • Author(s)
      生川雅紀
    • Organizer
      2022年度統計関連学会連合大会
    • Related Report
      2022 Research-status Report
  • [Presentation] 因子モデルを用いた長期記憶時系列の推定2019

    • Author(s)
      生川雅紀
    • Organizer
      2019年度統計関連学会連合大会
    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi