• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Bayesian Time Series Analysis of Limit Order Processes in Financial Markets

Research Project

Project/Area Number 19K01592
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 07030:Economic statistics-related
Research InstitutionKeio University

Principal Investigator

Nakatsuma Teruo  慶應義塾大学, 経済学部(三田), 教授 (90303049)

Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Keywords金融高頻度データ / 指値注文 / 継続時間モデル / ベイズ統計学 / マルコフ連鎖モンテカルロ法
Outline of Research at the Start

本研究では、金融市場における資産価格形成の解明を目的とし、指値注文(売買価格を指定する注文)の発生メカニズムを説明するための新しいモデルを提案するとともに、提案モデルを推定するための新しいアルゴリズムの開発を行う。本研究で提案する新モデルの大きな特徴としては、注文発生間隔のモデルに1日の取引時間中の周期的変動パターン(日中季節性)、市場に出されている指値注文の状況(板情報)、さらには買い注文と売り注文の相互作用を反映させている点があげられる。

Outline of Final Research Achievements

In this study, as a model to explain the generating mechanism of limit orders (orders that specify the bid or ask price) in financial markets, we proposed an extension of the ACD (Autoregressive Conditional Duration) model as well as the SCD (Stochastic Conditional Duration) model in which intraday seasonality and limit order book information (the price and quantity of limit orders) are incorporated. We also developed a new efficient algorithm for Bayesian estimation of the proposed models via Markov chain Monte Carlo. We estimated the proposed models with the data of limit orders in the Tokyo Stock Exchange, and examined influences of indicators related to the market liquidity upon time intervals between limit orders.

Academic Significance and Societal Importance of the Research Achievements

本研究で新たに開発されたSCDモデルのベイズ推定ためのアルゴリズムは、先行研究で使用されてきた手法と比べて、(1)日中季節性の多項式近似を他のパラメータと同時に推定できる、(2)マルコフ連鎖モンテカルロ法のためのサンプリングを安定して実現できる、(3)継続時間の分布として推定が比較的容易である指数分布を仮定した場合のみならずガンマ分布やワイブル分布を仮定した場合でも安定的に推定できる、などという特徴を有する。この手法はSCDモデルと似た構造を持つSV (Stochastic Volatility)モデルにも適用できるため、 計量ファイナンスの分野で幅広く応用されることが期待される。

Report

(4 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (10 results)

All 2022 2021 2020 2019

All Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (6 results) (of which Int'l Joint Research: 4 results) Book (1 results)

  • [Journal Article] A positive-definiteness-assured block Gibbs sampler for Bayesian graphical models with shrinkage priors2022

    • Author(s)
      Oya Sakae、Nakatsuma Teruo
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: - Issue: 1 Pages: 149-164

    • DOI

      10.1007/s42081-022-00147-1

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Bayesian Analysis of Intraday Stochastic Volatility Models of High-Frequency Stock Returns with Skew Heavy-Tailed Errors2021

    • Author(s)
      Nakakita Makoto、Nakatsuma Teruo
    • Journal Title

      Journal of Risk and Financial Management

      Volume: 14 Issue: 4 Pages: 145-145

    • DOI

      10.3390/jrfm14040145

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Volatility forecasts using stochastic volatility models with nonlinear leverage effects2019

    • Author(s)
      McAlinn Kenichiro、Ushio Asahi、Nakatsuma Teruo
    • Journal Title

      Journal of Forecasting

      Volume: 39 Issue: 2 Pages: 143-154

    • DOI

      10.1002/for.2618

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Bayesian Analysis of Intraday Stochastic Volatility Models of High Frequency Stock Returns with Skew Heavy-Tailed Errors2020

    • Author(s)
      中北誠
    • Organizer
      2020年度統計関連学会連合大会
    • Related Report
      2020 Research-status Report
  • [Presentation] ベイズ的アプローチによる多変量歪楕円分布のスパース推定2020

    • Author(s)
      大屋栄
    • Organizer
      2020年度統計関連学会連合大会
    • Related Report
      2020 Research-status Report
  • [Presentation] Modeling financial durations with limit order book information2019

    • Author(s)
      Tomoki Toyabe
    • Organizer
      The 4th Eastern Asia Meeting on Bayesian Statistics (EAC-ISBA 2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Modeling financial durations with limit order book information2019

    • Author(s)
      Tomoki Toyabe
    • Organizer
      The 13th International Conference on Computational and Financial Econometrics (CFE2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Bayesian analysis of intraday stochastic volatility models with skew heavy-tailed error and smoothing spline seasonality2019

    • Author(s)
      Makoto Nakakita
    • Organizer
      The 4th Eastern Asia Meeting on Bayesian Statistics (EAC-ISBA 2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Bayesian modeling of high frequency stochastic volatility with intraday seasonality and skew heavy-tailed error2019

    • Author(s)
      Makoto Nakakita
    • Organizer
      The 13th International Conference on Computational and Financial Econometrics (CFE2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Book] Pythonによる計量経済学入門2020

    • Author(s)
      中妻 照雄
    • Total Pages
      224
    • Publisher
      朝倉書店
    • ISBN
      9784254128994
    • Related Report
      2020 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi