Financial Risk Analysis using High Dimensional and/or High Frequency Data
Project/Area Number |
19K01594
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 07030:Economic statistics-related
|
Research Institution | Soka University |
Principal Investigator |
Asai Manabu 創価大学, 経済学部, 教授 (90319484)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2021: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
|
Keywords | 高次元データ / 高頻度データ / 金融資産リスク / 高次元 / 高頻度 / 実現ボラティリティ / 実現共分散 / リスク |
Outline of Research at the Start |
本研究では、高次元かつ高頻度データを用いて、共分散の新たなモデルを提案し、その実用性を検証していく。共分散のモデルでは、資産の数が増えるにしたがって、パラメータの数が2乗のオーダーで増えてしまうという問題がある。この点を考慮して、①ネットワーク型確率的ボラティリティ変動モデル、②主成分分析の考えを拡張した実現共分散モデル、③標準化による共分散構造の単純化の3点をテーマに研究を行い、その成果を3編の論文にまとめていく。
|
Outline of Final Research Achievements |
In the analysis of risks of financial assets, the risk is measure by the return volatility (standard deviation or variance). In recent years, high-dimensional and/or high-frequency data are available, and thus researchers can estimate time-varying risks more accurately. In this research project, I focused on three topics; (i) network volatility models, (ii) high-dimensional covariance model for high-frequency data, and (iii) Asymptotic property of QML estimator for the transformed BEKK models. The research results are summarized in eleven articles.
|
Academic Significance and Societal Importance of the Research Achievements |
金融資産のリスク分析において、高次元・高頻度データが使えるようになってきたとはいえ、その研究は緒に就いたばかりである。実用的なモデルを考案し、リスクの予測力の向上に役立てていくことは、実務上非常に重要である。
|
Report
(4 results)
Research Products
(20 results)