• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Representation of finite groups and its application for the study on existence of equivariant cylinders in Mori Fiber Spaces

Research Project

Project/Area Number 19K03395
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionSaitama University

Principal Investigator

Kishimoto Takashi  埼玉大学, 理工学研究科, 教授 (20372576)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
KeywordsFano多様体 / 自己同型群 / 同変コンパクト化 / フォーム / 森ファイバー空間 / シリンダー / del Pezzo多様体 / ユニポテント代数群 / 極小モデル理論 / 代数的トーラス / Weyl群 / Sarkisovプログラム / アフィン空間 / Rees代数 / トーリック多様体 / 双有理剛性 / ワイル群 / 有限群作用 / G-Fano多様体
Outline of Research at the Start

本研究課題の目的は標語的に述べると「森ファイバー空間(MFS)の自己同型群に含まれる有限部分群に関する同変な幾何学の理解」である.固定したMFSでも有限群Gとの兼ね合いで,G-同変なシリンダーを含むこともあるし,その対極としてG-birationally rigid, G-solidになることも起こり得る.現地点ではこの混沌として見える現象を司る理論を理解しようとするのが目的である.

Outline of Final Research Achievements

The research project entitled "Representation of finite groups and its application for the study on existence of equivariant cylinders in Mori Fiber Spaces" are devoted mainly to the construction and a classification of equivariant, or non-equivariant completions of the affine spaces, with several international collaborations. As for equivariant case, we can deal with Del Pezzo varieties defined over a field of characteristic zero, which is not necessarily algebraically closed. On the other hand, as for non-equivariant case, certainly we have to work over an algebraically closed field by some technical reason, we succeed into a development of a systematic way in order to construct completions of the affine spaces into Mori fiber spaces over curves.

Academic Significance and Societal Importance of the Research Achievements

今回の研究課題は,純粋数学に関することであるので,直接的な社会的意義は希薄かもしれないが,学術的意義は大きい.ある種のアフィン代数多様体の自己同型群に含まれるユニポテント代数群の存在は,対応する射影多様体に含まれるシリンダーの存在に翻訳される.しかし一般に与えられた射影多様体内のシリンダーが存在するかどうかを観察するのは,高次元の場合は困難である.今回の研究結果は,森ファイバー空間構造由来のシリンダーが存在するかどうかを,その生成ファイバーの振る舞いから判定できるという意味で,高次元の射影多様体のシリンダー性を,低次元のシリンダー性に帰着できるという利点があるのは特筆すべきである.

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (30 results)

All 2023 2022 2020 2019 Other

All Int'l Joint Research (16 results) Journal Article (7 results) (of which Int'l Joint Research: 7 results,  Peer Reviewed: 7 results,  Open Access: 4 results) Presentation (6 results) (of which Int'l Joint Research: 6 results,  Invited: 6 results) Remarks (1 results)

  • [Int'l Joint Research] Universite de Bourgogne(フランス)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Polish Academy of Science(ポーランド)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Universidad Tecnica Federico(チリ)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] University of Edinburgh(英国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Institute of Basic Science (IBS)(韓国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Universite de Bourgogne(フランス)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] Universidad Tecnica Federico Santa Maria(チリ)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] University of Edinburgh(英国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] University of Edinburgh(英国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Universite de Bourgogne(フランス)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Polish Academy of Sciences(ポーランド)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Universidad Tecnica Federico Santa Maria(チリ)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Bourgogne University(フランス)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Polish Academy of Sciences(ポーランド)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] KTH Royal Institute of Technology(スウェーデン)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] University of Edinburgh(英国)

    • Related Report
      2019 Research-status Report
  • [Journal Article] K-stable divisors in P1xP1xP2 of degree (1,1,2)2023

    • Author(s)
      Ivan Cheltsov, Kento Fujita, Takashi Kishimoto, Takuzo Okada
    • Journal Title

      Nagoya Mathematical Journal

      Volume: - Pages: 1-29

    • DOI

      10.1017/nmj.2023.5

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Toric G-solid Fano threefolds2023

    • Author(s)
      Ivan Cheltsov, Adrien Dubouloz, Takashi Kishimoto
    • Journal Title

      Selecta Mathematica

      Volume: - Issue: 2 Pages: 1-45

    • DOI

      10.1007/s00029-022-00816-9

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Completions of affine spaces into Mori fiber spaces with non-rational fibers2022

    • Author(s)
      Adrien Dubouloz, Takashi Kishimoto, Karol Palka
    • Journal Title

      Journal of the London Mathematical Society

      Volume: 106 Issue: 2 Pages: 1257-1290

    • DOI

      10.1112/jlms.12598

    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Rees algebras of additive group actions2022

    • Author(s)
      Adrien Dubouloz, Isac Heden, Takashi Kishimoto
    • Journal Title

      Mathematische Zeitschrift

      Volume: 301 Issue: 1 Pages: 593-626

    • DOI

      10.1007/s00209-021-02926-0

    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Equivariant extensions of Ga-torsors over punctured surfaces2019

    • Author(s)
      Adrien Dubouloz, Isac Heden and Takashi Kishimoto
    • Journal Title

      Annali della Scuola Normale Superiore de Pisa, Classe di Scienze

      Volume: 印刷中 Pages: 133-167

    • DOI

      10.2422/2036-2145.201710_002

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Deformations of A^1-cylindrical varieties2019

    • Author(s)
      Adrien Dubouloz and Takashi Kishimoto
    • Journal Title

      Mathematische Annalen

      Volume: 印刷中 Issue: 3-4 Pages: 1135-1149

    • DOI

      10.1007/s00208-018-1774-9

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Cylindres dans les fibrations de Mori: Formes du volume quintique de del Pezzo2019

    • Author(s)
      Adrien Dubouloz, Takashi Kishimoto
    • Journal Title

      Annales de l'Institut Fourier

      Volume: 69 Pages: 2377-2393

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Equivariant completions of vector groups into Fano varieties2022

    • Author(s)
      Takashi Kishimoto
    • Organizer
      Birational Geometry and K-stability of Fano Varieties
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Equivariant and non-equivariant completions of vector groups into Mori fiber spaces2022

    • Author(s)
      Takashi Kishimoto
    • Organizer
      Ra- tionality, Moduli Spaces, and Related Topics
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Equivariant completions of vector groups into Fano varieties2022

    • Author(s)
      Takashi Kishimoto
    • Organizer
      MSJ Autumn Meeting 2022 at Hokkaido University
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Unipotent group structures on quintic del Pezzo varieties2022

    • Author(s)
      Takashi Kishimoto
    • Organizer
      Rationality, Moduli spaces and Related Topics
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Pencils and Completions of the affine space and the exotic ones into Mori Fiber Spaces2020

    • Author(s)
      Takashi Kishimoto
    • Organizer
      Motivic Geometry Conference, The Centre for Advanced Study at the Norwegian Academy of Science and Letters in Oslo (CAS), Oslo,Norway (Online)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Cylinders in Mori Fiber Spaces I2019

    • Author(s)
      Takashi Kishimoto
    • Organizer
      Edge Days 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] 埼玉大学大学院理工学研究科 数理電子情報専攻 数学プログラム/理学部数学科

    • URL

      http://www.rimath.saitama-u.ac.jp

    • Related Report
      2021 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi