• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A function-field analogue of the Gauss hypergeometric function arising from Drinfeld modular curves over finite fields

Research Project

Project/Area Number 19K03400
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionShiga University

Principal Investigator

Hasegawa Takehiro  滋賀大学, 教育学系, 教授 (80409614)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2019: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Keywords超特異多項式 / 指数型超幾何関数 / 対数型超幾何関数 / ドリンフェルト加群 / モチーフ / 周期解釈 / ポリログ / 超幾何関数 / 超越数 / ドリンフェルト・モジュラー曲線 / 超特異点 / 関数体版超幾何関数 / 関数体の塔 / モジュラー曲線 / 多重対数関数 / 周期 / 有限体 / ハッセ不変量
Outline of Research at the Start

事前に異なる二つの方向の研究を行った.一つはドイリングの定理を「階数2ドリンフェルト加群」の場合に「関数体化」したもので,もう一つは同定理を「一般曲線」の場合に「高次元化」したものである.本研究では先行研究の前者の定理を「一般階数ドリンフェルト加群」の場合に高次元化する.基礎体を「関数体化」した定理の証明方法と,曲線を「高次元化」した定理の証明のアイデアとを,ベクトル的に足し合わせることによって進める.

Outline of Final Research Achievements

(1) I defined the exponential-type and the logarithmic-type hypergeometric functions for the Drinfeld modules of arbitrary rank, respectively. (2) I presented the explicit formula of the exponential for the Carlitz-Tate twist, and showed that each entry is expressed as a linear combination of the the exponential-type hypergeometric functions. Also, I determined the explicit formula of the logarithm of the Carlitz-Tate twist, and proved that each entry is expressed as a linear combination of the the logarithmic-type hypergeometric functions. (3) I defined the motivic logarithmic-type hypergeometric function for the Carlitz modules, and gave a necessary and sufficient condition for special values of logarithmic-type hypergeometric functions at algebraic points to be algebraic.

Academic Significance and Societal Importance of the Research Achievements

(1) Thakur の超幾何関数では代数体の世界の超幾何関数的現象を関数体の世界に再現しきれなかったが,ドリンフェルト加群の超幾何関数を定義したことで,再現できる範疇が拡がった. (2) カーリッツ加群の n 回テンソル積の指数関数および対数関数の係数の全成分を決定したことで,関数体版超越数論の発展が大いに期待できるようになった. (3) カーリッツ加群のモチビック・対数型超幾何関数を定義したことで,関数体版超幾何関数論にモチビック的手法が持ち込めるようになった.たとえば,Anderson-Brownawell-Papanikolas の結果(ABP 判定法)などが使えるようになった.

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (3 results)

All 2022 2021 2020

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results)

  • [Journal Article] Logarithmic-type and exponential-type hypergeometric functions for function fields2022

    • Author(s)
      Takehiro Hasegawa
    • Journal Title

      Journal of Number Theory

      Volume: 233 Pages: 87-111

    • DOI

      10.1016/j.jnt.2021.05.016

    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] A note on the moments of the Kesten distribution2021

    • Author(s)
      Takehiro Hasegawa, Seiken Saito
    • Journal Title

      Discrete Mathematics

      Volume: 344 Issue: 10 Pages: 112524-112524

    • DOI

      10.1016/j.disc.2021.112524

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Remarks on a paper by El-Guindy and Papanikolas2020

    • Author(s)
      Takehiro Hasegawa
    • Journal Title

      Ramanujan Journal

      Volume: 53 Issue: 1 Pages: 139-154

    • DOI

      10.1007/s11139-019-00214-4

    • Related Report
      2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed / Open Access

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi