• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Applications of p-adic Langlands correspondence to Iwasawa main conjecture

Research Project

Project/Area Number 19K03404
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionSaga University

Principal Investigator

Nakamura Kentaro  佐賀大学, 理工学部, 准教授 (90595993)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords岩澤主予想 / p進ラングランズ対応 / 局所イプシロン予想 / p進ガロア表現 / オイラー系 / p進L関数 / (phi,Gamma)加群 / ゼータ元 / モジュラー曲線 / 保型形式 / 楕円曲線 / p進局所ラングランズ対応 / ファイガンマ加群
Outline of Research at the Start

前年度までに構成した階数2の普遍変形に対するゼータ元を岩澤主予想と関連する様々な問題へ応用する。応用として考えられるのは、(1)Coleman-Mazur 固有曲線上のガロア表現の族に対するp進L関数の構成および岩澤主予想への応用、(2)階数2の普遍ガロア変形に対する加藤のイプシロン予想の証明、そして最後に(3)pで悪い還元を持つ場合への岩澤主予想への応用である。このうち(1)、(2)は既に(おおよその部分の)解決のアイデアはあるのでこれの細部を詰める作業を行う。(3)は今の所解決のアイデアは得られていないが、研究期間中に何か進展が得られることを期待している。

Outline of Final Research Achievements

I studied the Iwasawa main conjecture, in particular, Kato'c conjecture (the generalized Iwasawa main conjecture and the local epsilon conjecture). For the generalized Iwasawa main conjecture, I constructed zeta morphisms for rank two universal deformations using several theories in p-adic Langlands correspondence. As an application of it, I could prove a theorem which states that Iwasawa main conjecture for a modular form holds if the conjecture for a congruent modular holds. For the local epsilon conjecture, I proved a theorem which states that the local epsilon conjecture for a de Rham (phi, Gamma)-module holds if the conjecture for its associated p-adic differential equation holds (this is a joint work with Tetsuya Ishida (Saga Univ)).
As another application of zeta morphism, I constructed the p-adic L-function over the Coleman-Mazur eigen curve (this is a joint work with Chan-Ho Kim (KIAS)).

Academic Significance and Societal Importance of the Research Achievements

現在発展中のp進ラングランズ対応の理論が岩澤主予想と深く関わっていることを発見した本研究は、p進ラングランズ対応と岩澤理論双方の分野において価値のあることであると認識している。また、その応用として得られた、合同な保型形式に対する岩澤主予想の同値性に関する定理は、pで超カスプ表現となる保型形式に対する岩澤主予想についてのおそらく初めての結果であり、岩澤主予想の研究分野において大変価値の結果であると思っている。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (13 results)

All 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (2 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Open Access: 2 results,  Peer Reviewed: 1 results) Presentation (9 results) (of which Int'l Joint Research: 5 results,  Invited: 7 results)

  • [Int'l Joint Research] KIAS(韓国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Korea Institute for advanced study(韓国)

    • Related Report
      2021 Research-status Report
  • [Journal Article] Zeta morphisms for rank two deformations2021

    • Author(s)
      Kentaro Nakamura
    • Journal Title

      RIMS Kokyuroku No.2204

      Volume: 2204 Pages: 1-10

    • Related Report
      2021 Research-status Report
    • Open Access
  • [Journal Article] Remarks on Kato's Euler systems for elliptic curves with additive reduction2020

    • Author(s)
      Chan-Ho Kim, Kentaro Nakamura
    • Journal Title

      Journal of Number Theory

      Volume: 210 Pages: 249-279

    • DOI

      10.1016/j.jnt.2019.09.011

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Construction of p-adic L-functions over the Coleman-Mazur eigencurve2023

    • Author(s)
      Kentaro Nakamura
    • Organizer
      Algebraic and Analytic Aspects of L-functions, Incheon, UNIST
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Zeta morphisms for rank two universal deformations2023

    • Author(s)
      Kentaro Nakamura
    • Organizer
      Shimura Varieties and L-functions, MSRI
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Coleman-Mazur 固有値曲線上のp進L関数2022

    • Author(s)
      中村 健太郎
    • Organizer
      代数的整数論とその周辺2022, RIMS
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] p進ラングランズ対応と岩澤主予想について2021

    • Author(s)
      中村 健太郎
    • Organizer
      慶應義塾大学集中講義
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Coleman-Mazur 固有曲線上の$p$進$L$関数について2021

    • Author(s)
      中村 健太郎
    • Organizer
      慶應義塾大学坂内健一研究室プロジェクト研究集会2021
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Coleman-Mazur 固有曲線上の$p$進$L$関数2021

    • Author(s)
      中村 健太郎
    • Organizer
      数論幾何研究報告会
    • Related Report
      2021 Research-status Report
  • [Presentation] Zeta morphisms for rank two universal deformations2021

    • Author(s)
      Kentaro Nakamura
    • Organizer
      RIMS conference “Automorphic forms, Automorphic representations, Galois representations, and its related topics”
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] ゼータ元の合同と岩澤主予想への応用2020

    • Author(s)
      中村 健太郎
    • Organizer
      RIMS 研究集会「代数的整数論とその周辺」
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] GL_{2/Q}のp進Langlands対応と岩澤主予想2019

    • Author(s)
      中村健太郎
    • Organizer
      集中講義(東京大学)
    • Related Report
      2019 Research-status Report
    • Invited

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi