• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Special values of automorphic L-functions and periods

Research Project

Project/Area Number 19K03407
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionOsaka Metropolitan University (2022)
Osaka City University (2019-2021)

Principal Investigator

FURUSAWA Masaaki  大阪公立大学, 大学院理学研究科, 教授 (50294525)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords保型L函数 / L函数の特殊値 / テータ対応 / ジーゲル保型形式 / 代数学 / 数論
Outline of Research at the Start

次数2のジーゲル尖点形式のスピノルL函数の函数等式の中心における特殊値の、ベッセル周期と呼ばれる、ジーゲル尖点形式のフーリエ係数の有限和として表される周期による明示公式を確立することを、本研究計画はその主目的としている。
このL函数の特殊値は、アーベル曲面などの数論的に興味深い対象物の不変量と関連していると予想されており、明示公式はそれらの不変量の研究に大いに貢献することが期待される。

Outline of Final Research Achievements

Boecherer proclaimed a conjecture concerning degree two Siegel cusp forms whch are Hecke eighenforms in the mid 1980's, which was about a relationship between a finite sum over an ideal class group of an imaginary quadratic field of Fourier coefficients and the central value of the spinor L-function twisted by a quadratic character corresponding to the imaginary quadratic field. Many specialists were interested in it but it remained unsolved for a long time. In a joint work with Kazuki Morimoto at Kobe University, we proved the original conjecture. Moreover we proved its generalization to the case corresponding to a finite sum of Fourier coefficients weighted by a character of the ideal class group.

Academic Significance and Societal Importance of the Research Achievements

数論的に定義されたL函数の特殊値は、対応する数論的対象の重要な情報を含んでいると予想されている。特に函数等式の中心における特殊値は、Birch & Swinnerton-Dyer予想及びその一般化にみられるように、興味深い。本研究の成果である一般化されたBoecherer予想は、GL(2)に関するWaldspurgerの定理の自然な一般化であり、Waldspurgerの定理がこれまでに、楕円曲線及びGL(2)の保型形式の数論に、重要な応用をもたらしたように、今後、アーベル曲面及びGSp(2)の保型形式の数論への様々な応用が期待できる。本研究の研究成果の学術的意義は大きい。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (7 results)

All 2023 2022 2021 2020 2019

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (6 results) (of which Int'l Joint Research: 5 results,  Invited: 5 results)

  • [Journal Article] Refined global Gross-Prasad conjecture on special Bessel periods and Boecherer’s conjecture2020

    • Author(s)
      Furusawa Masaaki、Morimoto Kazuki
    • Journal Title

      Journal of the European Mathematical Society

      Volume: 23 Issue: 4 Pages: 1295-1331

    • DOI

      10.4171/jems/1034

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] ある市野-池田型公式と一般化されたベッヘラー予想について2023

    • Author(s)
      古澤昌秋
    • Organizer
      保型形式と数論ー 池田保先生還暦記念集会 ー
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On a certain Ichino-Ikeda type formula and the generalized Boecherer conjecture2023

    • Author(s)
      Masaaki Furusawa
    • Organizer
      Conference on Special Values of L-functions
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] (SO (5) , SO (2))に対するGross-Prasad予想とその精密化および一般化されたBoecherer予想について2022

    • Author(s)
      古澤昌秋
    • Organizer
      2022年度日本数学会年会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] On Boecherer's conjecture2021

    • Author(s)
      Masaaki Furusawa
    • Organizer
      POSTECH PMI-BRL Number Theory Seminar
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On Ichino-Ikeda type formula of Bessel periods for (SO(5), SO(2))2021

    • Author(s)
      Kazuki Morimoto
    • Organizer
      RIMS conference “Automorphic forms, Automorphic representations, Galois representations, and its related topics”
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] On Boecherer's conjecture2019

    • Author(s)
      Masaaki Furusawa
    • Organizer
      Modular Forms on Higher Rank Groups
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi