• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of Demazure modules in EW modules in terms of semi-infinite LS paths and its geometric application

Research Project

Project/Area Number 19K03415
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

Sagaki Daisuke  筑波大学, 数理物質系, 教授 (40344866)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords量子アフィン代数 / 結晶基底 / エクストリーマル・ウェイト加群 / 半無限LSパス / 量子LSパス / Demazure加群 / 量子alcove模型 / 量子 Grothendieck 多項式 / クリスタル
Outline of Research at the Start

2019年度:半無限Lakshmibai-Seshadri(LS)パスを用いてエクストリーマル・ウェイト(EW)加群における Demazure 加群の構造を組み合わせ論的に研究し,Demazure 加群の次数付き指標の半無限LSパスを用いた展開公式を求める.
2020年度~2021年度前半:半無限旗多様体の同変K-群における線束と半無限 Schubert 多様体の構造層の積, 半無限 Schubert 多様体の構造層同士の積の展開公式を求める.
2021年度後半~2022年度:Lenart-前野や Lenart-Postnikovによる旗多様体の量子K-群における予想を解決する.

Outline of Final Research Achievements

(1) In a joint work with C.Lenart and S.Naito, we gave a Chevalley type formula for arbitrary integral weight. (2) In a joint work with T.Kouno, S.Naito, and D.Orr, we gave an inverse Chevalley type formula for a general minuscule weight of a simply-laced simple Lie algebra. Then, in a joint work with C. Lenart, S.Naito, and D.Orr, we generalized the inverse Chevalley type formula to the case of a general integral weight. (3) In a joint work with S.Naito, we gave a Pieri type formula of quantum Grothendieck polynomials.

Academic Significance and Societal Importance of the Research Achievements

結合代数とそれの「良い」基底が与えられたときに,その基底に関する構造定数を決定するという問題が最も基本的で重要な問題である.「研究成果の概要」で述べた各公式は,半無限旗多様体のK群や,旗多様体の量子K群における構造定数を決定しており,その重要性は明らかである.実際に,科研費 23K03045 において,これらの公式を応用した研究をすでに始めている.また,量子 Grothendieck 多項式の Pieri 型の公式については,対称群と多項式という比較的易しいものを用いて記述されている.高校生や大学1年生などに解説して,数学に興味を持ってもらうきっかけになれば良いと考える.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (9 results)

All 2024 2023 2022 2021 2020

All Journal Article (8 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 8 results,  Open Access: 2 results) Presentation (1 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Journal Article] Quantum K-theory Chevalley formulas in the parabolic case2024

    • Author(s)
      Kouno Takafumi、Lenart Cristian、Naito Satoshi、Sagaki Daisuke
    • Journal Title

      Journal of Algebra

      Volume: 645 Pages: 1-53

    • DOI

      10.1016/j.jalgebra.2024.01.026

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Inverse K-Chevalley formulas for semi-infinite flag manifolds, II: Arbitrary weights in ADE type2023

    • Author(s)
      Lenart Cristian、Naito Satoshi、Orr Daniel、Sagaki Daisuke
    • Journal Title

      Advances in Mathematics

      Volume: 423 Pages: 109037-109037

    • DOI

      10.1016/j.aim.2023.109037

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Chevalley formula for anti-dominant minuscule fundamental weights in the equivariant quantum K-group of partial flag manifolds2022

    • Author(s)
      T. Kouno, S. Naito, and D. Sagaki
    • Journal Title

      Journal of Combinatorial Theory, Series A

      Volume: 192 Pages: 105670-105670

    • DOI

      10.1016/j.jcta.2022.105670

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Chevalley formula for anti-dominant weights in the equivariant K-theory of semi-infinite flag manifolds2021

    • Author(s)
      S. Naito, D. Orr, D. Sagaki
    • Journal Title

      Advances in Mathematics

      Volume: 387 Pages: 107828-107828

    • DOI

      10.1016/j.aim.2021.107828

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Inverse K-Chevalley formulas for semi-infinite flag manifolds, I: minuscule weights in ADE type2021

    • Author(s)
      Takafumi Kouno, Satoshi Naito, Daniel Orr, Daisuke Sagaki
    • Journal Title

      Forum of Mathematics, Sigma

      Volume: 9

    • DOI

      10.1017/fms.2021.45

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Equivariant K-theory of semi-infinite flag manifolds and the Pieri-Chevalley formula2020

    • Author(s)
      Kato Syu, Naito Satoshi, Sagaki Daisuke
    • Journal Title

      Duke Mathematical Journal

      Volume: 169 Issue: 13

    • DOI

      10.1215/00127094-2020-0015

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Path model for an extremal weight module over the quantized hyperbolic Kac-Moody algebra of rank 22020

    • Author(s)
      D.Sagaki and D.Yu
    • Journal Title

      Communications in Algebra

      Volume: 49 Issue: 2 Pages: 690-705

    • DOI

      10.1080/00927872.2020.1817467

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Tensor product decomposition theorem for quantum Lakshmibai-Seshadri paths and standard monomial theory for semi-infinite Lakshmibai-Seshadri paths2020

    • Author(s)
      S. Naito, F. Nomoto, and D. Sagaki
    • Journal Title

      Journal of Combinatorial Theory. Series A

      Volume: 169 Pages: 105122-105122

    • DOI

      10.1016/j.jcta.2019.105122

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] Chevalley type formula for level-zero Demazure modules in terms of the quantum alcove model2020

    • Author(s)
      Daisuke Sagaki
    • Organizer
      Discussion Meeting on Representation Theory 2020
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi