Project/Area Number |
19K03423
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 11010:Algebra-related
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 極小対数的食違い係数 / 昇鎖律 / 標準特異点 / 重み付き爆発 / 因子収縮写像 / 退化 / 代数学 / 代数幾何学 |
Outline of Research at the Start |
双有理幾何学の現在の標準理論は対数的極小モデルプログラムとして定式化されている.その最重要な課題であるフリップの終止予想の視点から,特異点の不変量である極小対数的食違い係数を研究する.本研究において,3次元極小対数的食違い係数の昇鎖律に取り組むことからはじめて,昇鎖律を一般次元で導くための帰納的議論を探る.
|
Outline of Final Research Achievements |
I established the ascending chain condition (ACC) for minimal log discrepancies on smooth threefolds completely. It implies, on smooth threefolds, the ACC for a-lc thresholds, the uniform ideal-adic semi-continuity and Nakamura's boundedness, which means the boundedness of the log discrepancy of some divisor that computes the minimal log discrepancy. The results are extended to the statements on a fixed terminal quotient threefold singularity. From the point of view of the ACC problem, I studied threefold log divisorial contractions from a canonical threefold to a canonical singularity of semistable type.
|
Academic Significance and Societal Importance of the Research Achievements |
代数多様体とは,連立多項式の共通零点集合として定義される図形です.対数的極小モデルプログラムと呼ばれる理論によって代数多様体を分類するとき,代数多様体の特異点を制御する必要が生じます.私は極小対数的食違い係数と呼ばれる特異点の不変量を研究しました.特に極小対数的食違い係数の重要な予想である昇鎖律予想を,なめらかな3次元代数多様体上で完全に解決しました.
|