• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Singularities in the log minimal model program

Research Project

Project/Area Number 19K03423
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionKyoto University

Principal Investigator

Kawakita Masayuki  京都大学, 数理解析研究所, 准教授 (10378961)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords極小対数的食違い係数 / 昇鎖律 / 標準特異点 / 重み付き爆発 / 因子収縮写像 / 退化 / 代数学 / 代数幾何学
Outline of Research at the Start

双有理幾何学の現在の標準理論は対数的極小モデルプログラムとして定式化されている.その最重要な課題であるフリップの終止予想の視点から,特異点の不変量である極小対数的食違い係数を研究する.本研究において,3次元極小対数的食違い係数の昇鎖律に取り組むことからはじめて,昇鎖律を一般次元で導くための帰納的議論を探る.

Outline of Final Research Achievements

I established the ascending chain condition (ACC) for minimal log discrepancies on smooth threefolds completely. It implies, on smooth threefolds, the ACC for a-lc thresholds, the uniform ideal-adic semi-continuity and Nakamura's boundedness, which means the boundedness of the log discrepancy of some divisor that computes the minimal log discrepancy. The results are extended to the statements on a fixed terminal quotient threefold singularity.
From the point of view of the ACC problem, I studied threefold log divisorial contractions from a canonical threefold to a canonical singularity of semistable type.

Academic Significance and Societal Importance of the Research Achievements

代数多様体とは,連立多項式の共通零点集合として定義される図形です.対数的極小モデルプログラムと呼ばれる理論によって代数多様体を分類するとき,代数多様体の特異点を制御する必要が生じます.私は極小対数的食違い係数と呼ばれる特異点の不変量を研究しました.特に極小対数的食違い係数の重要な予想である昇鎖律予想を,なめらかな3次元代数多様体上で完全に解決しました.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (10 results)

All 2022 2021 2020 2019 Other

All Journal Article (3 results) (of which Open Access: 1 results,  Peer Reviewed: 2 results) Presentation (4 results) (of which Int'l Joint Research: 2 results,  Invited: 4 results) Remarks (3 results)

  • [Journal Article] 3次元の双有理幾何2022

    • Author(s)
      Masayuki Kawakita
    • Journal Title

      代数学シンポジウム報告集

      Volume: 67 Pages: 141-152

    • Related Report
      2022 Research-status Report
    • Open Access
  • [Journal Article] On equivalent conjectures for minimal log discrepancies on smooth threefolds2021

    • Author(s)
      Masayuki Kawakita
    • Journal Title

      Journal of Algebraic Geometry

      Volume: 30 Issue: 1 Pages: 97-149

    • DOI

      10.1090/jag/757

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] On equivalent conjectures for minimal log discrepancies on smooth threefolds2020

    • Author(s)
      Masayuki Kawakita
    • Journal Title

      Journal of Algebraic Geometry

      Volume: -

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] 3次元の双有理幾何2022

    • Author(s)
      Masayuki Kawakita
    • Organizer
      第67回代数学シンポジウム
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] ACC for minimal log discrepancies and divisorial contractions in dimension three2019

    • Author(s)
      Masayuki Kawakita
    • Organizer
      Algebraic geometry in Auckland
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Problems on threefold singularities2019

    • Author(s)
      Masayuki Kawakita
    • Organizer
      Danwakai at Saitama University
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] On boundedness of divisors computing the minimal log discrepancy on a smooth threefold2019

    • Author(s)
      Masayuki Kawakita
    • Organizer
      Algebraic geometry international conference
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] Website of Masayuki Kawakita

    • URL

      https://www.kurims.kyoto-u.ac.jp/~masayuki/

    • Related Report
      2023 Annual Research Report
  • [Remarks] Website of Masayuki Kawakita

    • URL

      https://www.kurims.kyoto-u.ac.jp/~masayuki

    • Related Report
      2022 Research-status Report 2021 Research-status Report 2020 Research-status Report
  • [Remarks] Website of Masayuki Kawakita

    • URL

      http://www.kurims.kyoto-u.ac.jp/~masayuki

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi