• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mordell-Weil Groups of elliptically-fibered Calabi-Yau manifolds

Research Project

Project/Area Number 19K03427
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionChuo University

Principal Investigator

Kuwata Masato  中央大学, 経済学部, 教授 (00343640)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2023: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords楕円ファイブレーション / Mordell-Weil格子 / 楕円曲面 / Calabi-Yau多様体 / K3曲面 / Mordell-Weil群
Outline of Research at the Start

楕円曲面の切断のなす群,Mordell-Weil群は「高さ」による内積によって格子の構造を持ち,楕円曲面の幾何学的性質を解き明かす上で大きな役割を担う.近年,超弦理論において楕円ファイブレーションをもつ3次元以上のCalabi-Yau多様体が注目を集めており,とくにF-理論ではMordell-Weil群に物理的な意義が見出されている.本研究では,楕円ファイブレーションをもつ3次元以上のCalabi-Yau多様体上のMordell-Weil群について,楕円曲面での理論を拡張してMordell-Weil格子の理論に類似する理論を構築し,超弦理論などへの応用を目指す.

Outline of Final Research Achievements

We attempted to extend Mordell-Weil lattice theory for elliptic surfaces to higher-dimensional elliptically fibered varieties. We defined a lattice structure for the Mordell-Weil group of certain elliptic threefolds by introducing an inner product using the notion of height, and determined the structure in some cases. In particular, we have introduced a lattice structure to the rank 6 Mordell-Weil group of certain rational elliptic threefolds, and have shown that it is isomorphic to the root lattice of type E6. We also studied some Calabi-Yau threefolds with Mordell-Weil groups of rank 9 or 10.

Academic Significance and Societal Importance of the Research Achievements

楕円曲面の理論は代数幾何,解析学,数論など数学の様々な分野だけでなく,理論物理学まで密接に関連して発展してきた大変興味深い研究対象である.楕円曲面の切断のなす群は,交点形式に由来する内積によりMordell-Weil格子と呼ばれる格子の構造を持ち,その構造は楕円曲面の幾何学的性質を調べるなかで重要な役割を果たし,様々な応用を持つ.理論物理学では,高次元のCalabi-Yau楕円多様体のMordell-Weil群には物理的な意味あり,高次元の楕円多様体のMordell-Weil群に格子の構造を導入する試みは,広い分野に波及する可能性をもつ意義ある研究である.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (8 results)

All 2024 2023 2022 2021 2019

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (7 results) (of which Int'l Joint Research: 3 results,  Invited: 7 results)

  • [Journal Article] Ranks of elliptic curves in cyclic sextic extensions of Q2024

    • Author(s)
      Kisilevsky Hershy、Kuwata Masato
    • Journal Title

      Indagationes Mathematicae

      Volume: - Issue: 4 Pages: 728-743

    • DOI

      10.1016/j.indag.2024.01.004

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Presentation] Toward the theory of Mordell-Weil lattices of elliptic threefolds2023

    • Author(s)
      Masato Kuwata
    • Organizer
      Calabi-Yau Varieties and Related Topics 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 楕円曲線の巡回拡大上定義された有理点について2023

    • Author(s)
      鍬田 政人
    • Organizer
      2023 大分宮崎整数論研究集会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Double cover of extremal rational elliptic surfaces2023

    • Author(s)
      鍬田 政人
    • Organizer
      第 30 回 代数曲面ワークショップ
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Finding points defined over cyclic sextic extensions of an elliptic curve using a K3 surface2022

    • Author(s)
      Masato Kuwata
    • Organizer
      Curves over finite fields and arithmetic of K3 surfaces (Bernoulli Institute, Rijksuniversiteit Groningen)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Finding points defined over cyclic extensions of an elliptic curve: A geometric approach2022

    • Author(s)
      Masato Kuwata
    • Organizer
      Brown Universiy Algebra seminar
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Jacobians of genus 2 curves with full level 3 structure and the related elliptic fibrations2021

    • Author(s)
      Masato Kuwata
    • Organizer
      Boston University Number theory seminar
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Rational points on generalized Kummer varieties2019

    • Author(s)
      鍬田 政人
    • Organizer
      高次元代数多様体の有理点
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi