• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research of singularity theory using integrally closed ideals in positive characteristic

Research Project

Project/Area Number 19K03430
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionNihon University

Principal Investigator

YOSHIDA Ken-ichi  日本大学, 文理学部, 教授 (80240802)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
KeywordsHilbert-Kunz 重複度 / 幾何種数イデアル / 楕円型イデアル / 有理特異点 / 整閉イデアル / 正規還元種数 / 正規正接錐 / 楕円特異点 / Gorenstein / pgイデアル / 強楕円型イデアル / 正規イデアル / pg イデアル / 正規環元種数 / F-signature / regular / F-regular / Frobenius morphism / Frobenius pushforward / Cohen-Macaulay / canonical module / Hiilbert-Kunz 重複度 / Ulrich イデアル
Outline of Research at the Start

従来までの Hilbert-Kunz 重複度の研究は主として, 極大イデアルに関するHilbert-Kunz 重複度と他の不変量を比較して調べることにより,その局所環の性質を明らかにするという方法が用いられてきた。本研究は「極大イデアル」を「良い性質を持つ整閉イデアル」という対象に広げて研究する点に独創性があると言える。
また、本研究では,Hilbert-Kunz 重複度が非常に小さいものや特徴的な値を取るものに注目して,代表的な高次有理特異点のクラスを発見する予定である。

Outline of Final Research Achievements

We have investigated the lower bound problem on Hilbert-Kunz multiplicities, and gave a characterization of regular local rings in terms of HK multiplicity, and posed a conjecture on lower bound for HK multiplicities for singular Cohen-Macaulay local rings, which is an open question. In this research, we generalized an inequality with respect to the HK multiplicity and the usual multiplicity of the maximal ideal in 2-dimesnional Cohen-Macaulay local rings to the case of any m-primary ideals in any dimensional Cohen-Macaulay local rings, and posed a new conjecture on F-signatures as an application. Furthermore, we submitted a research paper as a joint work with Kei-ichi Watanabe (Nihon Univ.), Yusuke Nakajima(Kyoto Sangyo Univ.) et.al.
On the other hand, we introduced the notion of geometric ideals (pg-ideal, elliptic ideal) and gave a characterization of those ideals as a joint work with Kei-ichi Watanabe (Nihon Univ.)and Tomohiro Okuma (Yamagata Univ.).

Academic Significance and Societal Importance of the Research Achievements

HK重複度の概念は, 研究代表者が渡辺敬一氏と共に2000年頃から研究した概念であり, 我々が提供した予想は6次元以下の場合と完全交叉の場合以外は未解決である。この問題は HK重複度が「特異点の良さ」を表す指標となることを示しており,正標数の特異点の研究における重要な研究対象を提供し続けている。特に,本研究における我々の成果は高次元では不十分な成果であり,今後の発展が期待される。
一方,幾何的イデアルの研究は有理特異点における整閉イデアルの理論を,2次元一般の正規特異点において展開することを可能にするものとして興味深い。また,研究対象として, 正規還元種数と正規正接錐の重要性を示唆している。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (25 results)

All 2024 2023 2022 2021 2020 2019 Other

All Journal Article (6 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 6 results,  Open Access: 4 results) Presentation (16 results) (of which Int'l Joint Research: 3 results,  Invited: 5 results) Remarks (3 results)

  • [Journal Article] Lower bounds on Hilbert-Kunz multiplicities and maximal F-signatures2022

    • Author(s)
      JACK JEFFRIES, YUSUKE NAKAJIMA, ILYA SMIRNOV, KEI-ICHI WATANABE , KEN-ICHI YOSHIDA
    • Journal Title

      Mathematical Proceedings of the Cambridge Philosophical Society

      Volume: 174 Issue: 2 Pages: 247-271

    • DOI

      10.1017/s0305004122000238

    • Related Report
      2023 Annual Research Report 2022 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Normal Hilbert coefficients and elliptic ideals in normal two-dimensional singularities2022

    • Author(s)
      Okuma, Tomohiro and Rossi, Maria Evelina and Watanabe, Kei-ichi and Yoshida, Ken-ichi
    • Journal Title

      Nagoya Mathematical Journal

      Volume: - Pages: 1-22

    • DOI

      10.1017/nmj.2022.5

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Licci Level Stanley-Reisner Ideals with Height Three and with Type Two2020

    • Author(s)
      Rinaldo Giancarlo、Terai Naoki、Yoshida Ken-Ichi
    • Journal Title

      Combinatorial Structures in Algebra and Geometry(Springer Proceedings in Mathematics & Statistics

      Volume: 331 Pages: 123-142

    • DOI

      10.1007/978-3-030-52111-0_10

    • ISBN
      9783030521103, 9783030521110
    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Normal Reduction Numbers for Normal Surface Singularities with Application to Elliptic Singularities of Brieskorn Type2019

    • Author(s)
      Okuma Tomohiro、Watanabe Kei-ichi、Yoshida Ken-ichi
    • Journal Title

      Acta Mathematica Vietnamica

      Volume: 44 Issue: 1 Pages: 87-100

    • DOI

      10.1007/s40306-018-00311-4

    • Related Report
      2021 Research-status Report 2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Cleanness of Cohen-Macaulay ideals generated by at most five monomials2019

    • Author(s)
      Chihiro Enomoto and Ken-ichi Yoshida
    • Journal Title

      Rendiconti del Seminario Mathematico della Universita de Padova

      Volume: 141 Pages: 243-268

    • DOI

      10.4171/rsmup/25

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the almost Gorenstein property in Rees algebras of contracted ideals2019

    • Author(s)
      Shiro Goto, Naoyuki Matsuoka, Naoki Taniguchi, Ken-ichi Yoshida
    • Journal Title

      Kyoto J. Math.

      Volume: 59 Issue: 4 Pages: 769-785

    • DOI

      10.1215/21562261-2018-0001

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Normal tangent cone of the maximal ideal for a certain hypersurface2024

    • Author(s)
      吉田健一
    • Organizer
      日本数学会2024年日本数学会代数学分科会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Normal tangent cones of symmetric numerical semigoup rings2024

    • Author(s)
      吉田健一
    • Organizer
      東京可換環論セミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Gorenstein normal tangent cones2023

    • Author(s)
      吉田健一
    • Organizer
      第44回可換環論シンポジウム
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Gorenstein normal tangent cones2023

    • Author(s)
      吉田健一
    • Organizer
      日本数学会2023年秋季総合分科会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Gorensteinness for normal tangent cones of the maximal ideals of Brieskorn hypersurfaces2023

    • Author(s)
      吉田健一,奥間智弘,渡辺敬一
    • Organizer
      日本数学会総会代数学分科会
    • Related Report
      2022 Research-status Report
  • [Presentation] Introduction to ring-theoretic properties of geometric ideals2023

    • Author(s)
      吉田健一
    • Organizer
      Mini workshop on singularities -Various aspects of singularities
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Gorensteinness for normal tangent cones of elliptic ideals2022

    • Author(s)
      吉田健一,奥間智弘,渡辺敬一
    • Organizer
      日本数学会2022年度秋季総合分科会
    • Related Report
      2022 Research-status Report
  • [Presentation] Gorensteinness for normal tangent cones of geometric ideals2022

    • Author(s)
      吉田健一,奥間智弘,渡辺敬一
    • Organizer
      第42回可換環論シンポジウム
    • Related Report
      2022 Research-status Report
  • [Presentation] A note on core(m) of Gorenstein local rings of reduction exponent 22021

    • Author(s)
      吉田健一
    • Organizer
      可換環論オンラインセミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] Strongly elliptic ideals and the core of ideals2021

    • Author(s)
      吉田健一
    • Organizer
      第42回可換環論シンポジウム(オンライン)
    • Related Report
      2021 Research-status Report
  • [Presentation] 2つの異なる正規還元種2021

    • Author(s)
      吉田健一・奥間智弘・渡辺敬一
    • Organizer
      日本数学会総会代数学分科会
    • Related Report
      2020 Research-status Report
  • [Presentation] Strongly elliptic ideal2021

    • Author(s)
      吉田健一・奥間智弘・渡辺敬一
    • Organizer
      日本数学会総会代数学分科会
    • Related Report
      2020 Research-status Report
  • [Presentation] Lower bound on Hilbert-Kunz multiplicities and some related results2020

    • Author(s)
      Ken-ichi Yoshida
    • Organizer
      IIT Bombay Virtual Commutative Algebra Seminar
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Two normal reduction numbers2020

    • Author(s)
      Ken-ichi Yoshida
    • Organizer
      東大可換環セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Ulrich module と正標数の不変量2019

    • Author(s)
      吉田健一
    • Organizer
      第64回代数学シンポジウム
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Normal reduction numbers of integrally closed ideals in a 2-dimensional cone-like singularities2019

    • Author(s)
      奥間智弘, 渡辺敬一, 吉田健一
    • Organizer
      第41回可換環論シンポジウム
    • Related Report
      2019 Research-status Report
  • [Remarks]

    • URL

      https://researcher-web.nihon-u.ac.jp/search/group-search?lang=ja

    • Related Report
      2023 Annual Research Report
  • [Remarks] 日本大学 研究者情報システム

    • URL

      https://researcher-web.nihon-u.ac.jp/search/group-search?lang=ja

    • Related Report
      2022 Research-status Report
  • [Remarks] 日本大学教員情報検索

    • URL

      https://kenkyu-web.cin.nihon-u.ac.jp/scripts/websearch/index.htm#

    • Related Report
      2021 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi