• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Application of additive number theory to the asymptotic behavior of digits in multidimensional numeration systems

Research Project

Project/Area Number 19K03439
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

Kaneko Hajime  筑波大学, 数理物質系, 准教授 (10706724)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords一様分布論 / ベータ展開 / 正規数 / ディオファントス近似 / sum of digit / 線形回帰数列 / ラグランジュスペクトラム / 円分多項式 / 数系 / シフト空間 / 記号力学系 / 等比数列 / 代数的整数 / ディオファントス方程式 / 小数部分 / Pisot数 / 多次元数系 / 解析数論 / 加法数論 / エルゴード理論
Outline of Research at the Start

実数の10進展開等に現れる無限の数列の各項をdigitという。Digitの複雑性を研究することは、重要な研究課題である。例えば、円周率の10進展開におけるdigitはランダムであると予想されているが、証明は未解決である。Digitのランダム性は疑似乱数などへ応用を持つため、複雑性の解明が必要である。
本研究では、高次元連分数展開など、多次元の数系におけるdigitの複雑性を解析する。特に、digitのランダム性や周期性に関する未解決問題に挑戦する。

Outline of Final Research Achievements

We investigated the complexity of digits in number systems such as rotational beta expansion. In particular, we have improved the estimation for the number of digit exchanges, which gives partial result for generalized Borel's conjecture on normality.
We also investigated the complexity of the digits in the binary expansion of special integers. In particular, we researched the sum of digits. Improving the algorithm, we proved finiteness of the solutions of Diophantine equation related to sum of digits.
Moreover, we have studied the fractional parts of linear recurrences, which is related to Diophantine approximation properties. We have investigated new formulae for the fractional parts of linear recurrences. Applying such formulae, we have treated the maximal limit points of the fractional parts of linear recurrences. We have discovered that the set of such points have analogous property as the Markoff-Lagrange spectrum.

Academic Significance and Societal Importance of the Research Achievements

Rotational beta展開という多次元数系におけるdigitの複雑さに関する研究成果に関して、先行研究を大幅に改良することに成功した。Digitの複雑さに関しては、疑似乱数などへの応用の観点からも重要である。
また、sum of digitに関連のあるディオファントス方程式の解を考察する際に、従来のアルゴリズムを大幅に改良することに成功した。
さらに、線形回帰数列の小数部分の明示公式を応用することにより、ディオファントス近似に関する新たな知見を得ることができた。特に、等比数列をはじめとする線形回帰数列の小数部分が取りうる範囲に関して、成果を得ることができた。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (34 results)

All 2024 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (6 results) Journal Article (7 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 7 results,  Open Access: 1 results) Presentation (21 results) (of which Int'l Joint Research: 8 results,  Invited: 9 results)

  • [Int'l Joint Research] Lorraine大学/Paris Cite大学/Strasbourg大学(フランス)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Dongguk大学(韓国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Lorraine大学(フランス)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Lorraine大学(フランス)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] University of Lorraine(フランス)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Dongguk University(韓国)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Markoff-Lagrange spectrum of one-sided shifts2024

    • Author(s)
      Hajime Kaneko, Wolfgang Steiner
    • Journal Title

      Mathematika

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On the binary digits of n and n22023

    • Author(s)
      Aloui Karam、Jamet Damien、Kaneko Hajime、Kopecki Steffen、Popoli Pierre、Stoll Thomas
    • Journal Title

      Theoretical Computer Science

      Volume: 939 Pages: 119-139

    • DOI

      10.1016/j.tcs.2022.10.018

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The digit exchanges in the rotational beta expansions of algebraic numbers2022

    • Author(s)
      Kaneko Hajime、Kawashima Makoto
    • Journal Title

      Journal of Number Theory

      Volume: 241 Pages: 430-449

    • DOI

      10.1016/j.jnt.2022.04.002

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Curious congruences for cyclotomic polynomials2022

    • Author(s)
      Akiyama Shigeki、Kaneko Hajime
    • Journal Title

      Research in Number Theory

      Volume: 8 Issue: 4

    • DOI

      10.1007/s40993-022-00410-0

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Products of integers with few nonzero digits2022

    • Author(s)
      Hajime Kaneko, Thomas Stoll
    • Journal Title

      Uniform Distribution Theory

      Volume: 17 Issue: 1 Pages: 11-28

    • DOI

      10.2478/udt-2022-0006

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Multiplicative analogue of Markoff-Lagrange spectrum and Pisot numbers2021

    • Author(s)
      Shigeki Akiyama, Hajime Kaneko
    • Journal Title

      Advances in Mathematics

      Volume: 380 Pages: 107547-107547

    • DOI

      10.1016/j.aim.2020.107547

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Generic point equivalence and Pisot numbers2019

    • Author(s)
      AKIYAMA SHIGEKI、KANEKO HAJIME、KIM DONG HAN
    • Journal Title

      Ergodic Theory and Dynamical Systems

      Volume: - Issue: 12 Pages: 3169-3180

    • DOI

      10.1017/etds.2019.46

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Analogue of Markoff and Lagrange spectra on one-sided shift spaces2024

    • Author(s)
      金子 元
    • Organizer
      ワークショップ「数論とエルゴード理論」
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 片側シフト空間におけるMarkoff-Lagrangeスペクトラムについて2024

    • Author(s)
      金子 元
    • Organizer
      数論セミナー
    • Related Report
      2023 Annual Research Report
  • [Presentation] Markoff and Lagrange spectra on one-sided shift spaces with cylinder orders2024

    • Author(s)
      金子 元
    • Organizer
      Diophantine Analysis and Related Fields 2024
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Multiplicative version of Markoff-Lagrange spectrum and geometric sequences2024

    • Author(s)
      金子元
    • Organizer
      Mathematics Seminar (at Dongguk University)
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Analogue of the Markoff-Lagrange spectrum and uniform distribution theory2023

    • Author(s)
      金子 元
    • Organizer
      Numeration 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the binary digits of n and n^22023

    • Author(s)
      Pierre Popoli
    • Organizer
      Numeration 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 代数的数のRotational beta展開におけるdigitに関して2023

    • Author(s)
      金子 元
    • Organizer
      東北確率論セミナー
    • Related Report
      2023 Annual Research Report
  • [Presentation] Lagrange spectrum in ordered shift spaces2023

    • Author(s)
      金子 元
    • Organizer
      Nancy-Metz number theory seminar
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] On the Diophantine equations related to the binary expansions of integers2023

    • Author(s)
      金子 元
    • Organizer
      数論とエルゴード理論
    • Related Report
      2022 Research-status Report
  • [Presentation] On the binary digits of n and n^22023

    • Author(s)
      Pierre Popoli
    • Organizer
      Diophantine Analysis and Related Fields 2023
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Multiplicative analogue of the Lagrange spectrum related to linear recurrences2022

    • Author(s)
      金子 元
    • Organizer
      DARFセミナー
    • Related Report
      2022 Research-status Report
  • [Presentation] New relation for the coefficients of cyclotomic polynomials2022

    • Author(s)
      金子 元
    • Organizer
      解析的整数論とその周辺
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Multiplicative analogue of Markoff-Lagrange spectrum related to geometric progressions2022

    • Author(s)
      金子 元
    • Organizer
      エルゴード理論の最近の進展(京都大学数理解析研究所)
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 整数の積の2進展開に関する0でないdigitの個数について2021

    • Author(s)
      金子 元
    • Organizer
      解析的整数論とその周辺(京都大学数理解析研究所)
    • Related Report
      2021 Research-status Report
  • [Presentation] Products of integers with few nonzero digits in binary expansion2021

    • Author(s)
      金子 元
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report
  • [Presentation] Analogy of Lagrange spectrum related to geometric progressions2020

    • Author(s)
      金子 元
    • Organizer
      One World Numeration Seminar
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Hensel's lemma and application for the base-b expansions of integers2020

    • Author(s)
      金子 元
    • Organizer
      Number Theory and Ergodic Theory
    • Related Report
      2019 Research-status Report
  • [Presentation] On multiplicative Markoff-Lagrange spectra2020

    • Author(s)
      秋山茂樹
    • Organizer
      明学セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Analogy with the Lagrange spectrum for the powers of quadratic Pisot unit2019

    • Author(s)
      金子 元
    • Organizer
      Equidistribution: Arithmetic, Computational and Probabilistic Aspects
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Normality equivalence and Pisot numbers2019

    • Author(s)
      秋山 茂樹
    • Organizer
      Equidistribution: Arithmetic, Computational and Probabilistic Aspects
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Analogy with the Lagrange spectrum for geometric progressions2019

    • Author(s)
      金子 元
    • Organizer
      seminaire(ロレーヌ大学)
    • Related Report
      2019 Research-status Report
    • Invited

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi