Project/Area Number |
19K03439
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 11010:Algebra-related
|
Research Institution | University of Tsukuba |
Principal Investigator |
Kaneko Hajime 筑波大学, 数理物質系, 准教授 (10706724)
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | 一様分布論 / ベータ展開 / 正規数 / ディオファントス近似 / sum of digit / 線形回帰数列 / ラグランジュスペクトラム / 円分多項式 / 数系 / シフト空間 / 記号力学系 / 等比数列 / 代数的整数 / ディオファントス方程式 / 小数部分 / Pisot数 / 多次元数系 / 解析数論 / 加法数論 / エルゴード理論 |
Outline of Research at the Start |
実数の10進展開等に現れる無限の数列の各項をdigitという。Digitの複雑性を研究することは、重要な研究課題である。例えば、円周率の10進展開におけるdigitはランダムであると予想されているが、証明は未解決である。Digitのランダム性は疑似乱数などへ応用を持つため、複雑性の解明が必要である。 本研究では、高次元連分数展開など、多次元の数系におけるdigitの複雑性を解析する。特に、digitのランダム性や周期性に関する未解決問題に挑戦する。
|
Outline of Final Research Achievements |
We investigated the complexity of digits in number systems such as rotational beta expansion. In particular, we have improved the estimation for the number of digit exchanges, which gives partial result for generalized Borel's conjecture on normality. We also investigated the complexity of the digits in the binary expansion of special integers. In particular, we researched the sum of digits. Improving the algorithm, we proved finiteness of the solutions of Diophantine equation related to sum of digits. Moreover, we have studied the fractional parts of linear recurrences, which is related to Diophantine approximation properties. We have investigated new formulae for the fractional parts of linear recurrences. Applying such formulae, we have treated the maximal limit points of the fractional parts of linear recurrences. We have discovered that the set of such points have analogous property as the Markoff-Lagrange spectrum.
|
Academic Significance and Societal Importance of the Research Achievements |
Rotational beta展開という多次元数系におけるdigitの複雑さに関する研究成果に関して、先行研究を大幅に改良することに成功した。Digitの複雑さに関しては、疑似乱数などへの応用の観点からも重要である。 また、sum of digitに関連のあるディオファントス方程式の解を考察する際に、従来のアルゴリズムを大幅に改良することに成功した。 さらに、線形回帰数列の小数部分の明示公式を応用することにより、ディオファントス近似に関する新たな知見を得ることができた。特に、等比数列をはじめとする線形回帰数列の小数部分が取りうる範囲に関して、成果を得ることができた。
|