• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Application of cluster algebras to punctured Riemann surfaces and combinatorial representation theory

Research Project

Project/Area Number 19K03440
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionChiba University

Principal Investigator

Yamazaki (Inoue) Rei  千葉大学, 大学院理学研究院, 教授 (30431901)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywordsクラスター代数 / タイヒミュラー空間 / ワイル群 / 量子群 / q指標 / 四面体方程式 / 量子クラスター代数 / 3次元反射方程式 / 量子群の表現 / 量子化 / 双曲幾何 / 表現論 / 非可換化 / 点付きリーマン面 / 可積分系 / 組合せ論
Outline of Research at the Start

量子群の表現論に出自をもつ「幾何R行列」を今世紀新しく導入された「クラスター代数」の文脈で書き換えた我々の最近の論文のアイデアをもとに,幾何学および組合せ論的表現論の新しい展開を生み出す.特に,Kac-Moody Lie環に付随した点付きリーマン面の高次タイヒミュラー空間の性質と量子群との関係,および全正値行列にまつわる概念の非可換化を研究する.

Outline of Final Research Achievements

We studied applications of cluster algebras to representation theory and integrable systems. For a finite dimensional simple Lie algebra g, we define m-periodic quiver and realize the Weyl group of g as mutation sequences of the quiver. In particular, when q is a root of unity we clarify the Weyl invariant subgroup of a rational functional field including the q-character of the qunatum group for g. In 2020 and 2021, our research activities were severely restricted due to the pandemic, but from 2022 onwards, our research activities have gradually recovered, and we gave a large number of research talks. In 2023, after extending the research period, we started the new challenge of applying cluster algebra to three-dimensional integrable systems, and achieved great results.

Academic Significance and Societal Importance of the Research Achievements

クラスター代数の表現論、3次元可積分系への新しい応用を見つけたことが本研究の大きな学術的意義である。本研究で構成したワイル群のクラスター代数による実現は、表現論だけでなくタイヒミュラー空間や可積分系でも様々な応用が見つかっている。このワイル群の実現はアフィンLie環の場合に拡張することができ、さらなる発展が期待される。3次元可積分系へのクラスター代数の応用は、これまで発見的に構成されていた四面体方程式と3次元方程式の様々な解を統一的に扱う可能性をもった新しい手法である。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (24 results)

All 2024 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (1 results) Journal Article (5 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 5 results) Presentation (15 results) (of which Int'l Joint Research: 8 results,  Invited: 13 results) Remarks (3 results)

  • [Int'l Joint Research] 精華大学(中国)

    • Related Report
      2023 Annual Research Report
  • [Journal Article] Tetrahedron equation and quantum cluster algebras2024

    • Author(s)
      Rei Inoue, Atsuo Kuniba, Yuji Terashima
    • Journal Title

      Journal of Physics A: Mathematical and Thoretical

      Volume: 57 Issue: 8 Pages: 085202-085202

    • DOI

      10.1088/1751-8121/ad2224

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Invariants of Weyl Group Action and q-characters of Quantum Affine Algebras2023

    • Author(s)
      Inoue Rei、Yamazaki Takao
    • Journal Title

      Algebras and Representation Theory

      Volume: 26 Issue: 6 Pages: 3167-3183

    • DOI

      10.1007/s10468-023-10205-1

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Cluster realizations of Weyl groups and higher Teichmuller theory2021

    • Author(s)
      Rei Inoue, Tsukasa Ishibashi and Hironori Oya
    • Journal Title

      Selecta Mathematica

      Volume: 27 Issue: 3

    • DOI

      10.1007/s00029-021-00630-9

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Cluster realization of Weyl groups and q-characters of quantum affine algebras2021

    • Author(s)
      Inoue Rei
    • Journal Title

      Letters in Mathematical Physics

      Volume: 111 Issue: 1 Pages: 1-32

    • DOI

      10.1007/s11005-020-01347-0

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the Cluster Nature and Quantization of Geometric R-Matrices2019

    • Author(s)
      Inoue Rei、Lam Thomas、Pylyavskyy Pavlo
    • Journal Title

      Publications of the Research Institute for Mathematical Sciences

      Volume: 55 Issue: 1 Pages: 25-78

    • DOI

      10.4171/prims/55-1-2

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Cluster algebras and 3D integrability2024

    • Author(s)
      Rei Inoue
    • Organizer
      Advances in Cluster Algebras 2024 (名古屋大学)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 量子クラスター代数と3 次元可積分性2024

    • Author(s)
      井上玲,国場敦夫,寺嶋侑二
    • Organizer
      日本数学会2024年度年会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Symmetry of discrete and ultradiscrete integrable systems2023

    • Author(s)
      Rei Inoue
    • Organizer
      Non-commutative Geometry meets Topological Recursion (ESI, Vienna)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Cluster realization of Weyl group and its applications to representation theory2023

    • Author(s)
      Rei Inoue
    • Organizer
      FPSAC'23 (UC Davis, California)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] クラスター変異と3次元可積分系2023

    • Author(s)
      井上 玲
    • Organizer
      可積分系数理における最近の展開 (数理解析研究所)
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Cluster realization of Weyl groups and its applications to representation theory2023

    • Author(s)
      Rei Inoue
    • Organizer
      Workshop on mirror symmetry and related topics (京都大学)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] ワイル群のクラスター実現と表現論への応用2023

    • Author(s)
      Rei Inoue
    • Organizer
      日本数学会年会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Cluster algebras and combinatorics in representation theory, Cluster algebra and its development, Cluster algebras and hyperbolic geometry2022

    • Author(s)
      Rei Inoue
    • Organizer
      Aisenstadt Chair Lecture Series, CRM
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Cluster algebras and its applications to rational maps2022

    • Author(s)
      Rei Inoue
    • Organizer
      The 2022 ANZAMP (The Australian and New Zealand Association of Mathematical Physics) Meeting
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] クラスター代数と双曲幾何2022

    • Author(s)
      井上玲
    • Organizer
      第75回 Encounter with Mathematics
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] クラスター代数とその広がり2021

    • Author(s)
      井上 玲
    • Organizer
      第66回 代数学シンポジウム
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Cluster realization of Weyl groups and its applications2020

    • Author(s)
      Rei Inoue
    • Organizer
      2020年度表現論シンポジウム
    • Related Report
      2020 Research-status Report
  • [Presentation] R-matrices in cluster algebras2020

    • Author(s)
      Rei Inoue
    • Organizer
      Baxter 2020: Frontiers in Integrability (ANU, オーストラリア)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Cluster realizations of Weyl groups and their applications2019

    • Author(s)
      Rei Inoue
    • Organizer
      Cluster Algebras 2019 (京都大学)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Cluster realizations of Weyl groups and their applications2019

    • Author(s)
      Rei Inoue
    • Organizer
      Integrable systems, special functions and combinatorics (ICMS, イギリス)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] Rei Inoue’s page

    • URL

      https://sites.google.com/site/reiinouesite/

    • Related Report
      2023 Annual Research Report
  • [Remarks] Rei Inoue’s page

    • URL

      https://sites.google.com/site/reiinouesite/Home

    • Related Report
      2022 Research-status Report
  • [Remarks] Rei Inoue's page

    • URL

      https://sites.google.com/site/reiinouesite/

    • Related Report
      2020 Research-status Report 2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi