• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction by diagram and classification by invariant of surface-knot

Research Project

Project/Area Number 19K03466
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionKobe University

Principal Investigator

Satoh Shin  神戸大学, 理学研究科, 教授 (90345009)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords曲面結び目 / 2次元結び目 / 射影図 / 3重点数 / 不変量 / 仮想結び目 / 交差多項式 / 局所変形 / 曲面絡み目 / ブランチ点 / ねじれ多項式 / 奇ねじれ数 / クシイ変形
Outline of Research at the Start

1 次元の結び目は射影図を用いることでさまざまな不変量を生み出し, 幅広い応用とと もに活発に研究されてきた. これに対し2次元の結び目の研究はその視覚化の困難さから構成と分類の両面で立ち遅れている. 本研究では曲面結び目の射影図が内包する複雑さを考察し, 4 次元空間の中の曲面結び目を実際に目で見て扱えるレベルまで落としてその性質を解明する. 古典結び目の研究と曲面結び目の射影図とを組み合わせることで, 曲面結び目の新しい不変量を探索し, 古典結び目と曲面結び目の類似性と相違性に着目しながら曲面結び目の分類と構成につなげる.

Outline of Final Research Achievements

The construction and classification of surface-knots are fundamental problems in surface-knot theory. The aim of this study is to construct surface-knots via diagrams and classify them via invariants. We develop a method to present diagrams of 2-knots of triple point number four via diagrams, and prove that a 2-knot has the triple point number four if and only if it is ribbon-concordant to the 2-twist-spun trefoil knot. It is known that an oriented ribbon surface-knot of genus one is presented by a virtual knot. We define three kinds of intersection polynomials of a virtual knot, which are independent of the writhe polynomial, and give a characterization of the polynomial and several properties on the connected sum. We also give a local move called a Xi-move corresponding to the odd writhe of a virtual knot. Furthermore we introduce virtualized Delta-, sharp-, and pass-moves and determine the invariants corresponding those local moves.

Academic Significance and Societal Importance of the Research Achievements

曲面結び目の表の作成は、分類と構成の観点から重要な課題であり、その点で3重点数が4である2次元結び目の決定は意義が大きい。その手法は古典的結び目のガウス図を踏襲しており、種数が正である曲面結び目の分類にも応用ができる。リボン曲面結び目は仮想結び目で表示できるため、仮想結び目の不変量の研究は曲面結び目の研究につながる。本研究で導入した3種類の交差多項式は既知の不変量と独立な新しいもので、仮想結び目の連結和などに関し多くの応用を与えた点でインパクトがある。奇捩れ数に対する局所変形や、仮想デルタ変形などに対応する不変量の決定は、結び目理論における代数的・幾何的構造を明らかにする点で重要である。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (17 results)

All 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (1 results) Journal Article (6 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 6 results,  Open Access: 4 results) Presentation (10 results) (of which Int'l Joint Research: 4 results,  Invited: 6 results)

  • [Int'l Joint Research] University of South Florida(米国)

    • Related Report
      2019 Research-status Report
  • [Journal Article] The intersection polynomials of a virtual knot I: Definitions and calculations2023

    • Author(s)
      Higa Rayuji、Nakamura Takuji、Nakanishi Yasutaka、Satoh Shin
    • Journal Title

      Indiana University Mathematics Journal

      Volume: 72 Issue: 6 Pages: 2369-2401

    • DOI

      10.1512/iumj.2023.72.9599

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] The intersection polynomials of a virtual knot II: Connected sums2023

    • Author(s)
      Higa Ryuji、Nakamura Takuji、Nakanishi Yasutaka、Satoh Shin
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 32 Issue: 10 Pages: 2350067-2350067

    • DOI

      10.1142/s0218216523500670

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Classification of 2-component virtual links up to $\Xi$-moves2023

    • Author(s)
      Jean-Baptiste Meilhan, Shin Satoh, Kodai Wada
    • Journal Title

      Fundamenta Mathematicae

      Volume: 263 Issue: 3 Pages: 203-234

    • DOI

      10.4064/fm168-10-2023

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] The intersection polynomials of a virtual knot I: Definitions and calculations2021

    • Author(s)
      R. Higa, T. Nakamura, Y. Nakanisi, and S. Satoh
    • Journal Title

      Indiana Univ. Math. J. (to appear)

      Volume: -

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Writhe polynomials and shell moves for virtual knots and links2020

    • Author(s)
      Nakamura Takuji, Nakanishi Yasutaka, Satoh Shin
    • Journal Title

      European Journal of Combinatorics

      Volume: 84 Pages: 103033-103033

    • DOI

      10.1016/j.ejc.2019.103033

    • Related Report
      2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A note on coverings of virtual knots2019

    • Author(s)
      Nakamura Takuji, Nakanishi Yasutaka, Satoh Shin
    • Journal Title

      Journal of Knot Theory and its Ramifications

      Volume: Online Ready Issue: 08 Pages: 1971002-1971002

    • DOI

      10.1142/s0218216519710020

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 2次元結び目の表の作成に向けて2022

    • Author(s)
      佐藤進
    • Organizer
      2022日本数学会秋季総合分科会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] ガウス語の平面性と2次元結び目2022

    • Author(s)
      佐藤進
    • Organizer
      研究集会「4次元トポロジー」
    • Related Report
      2022 Research-status Report
  • [Presentation] A note on the Gauss word of an arc on a 2-sphere2021

    • Author(s)
      佐藤進
    • Organizer
      研究集会「拡大KOOKセミナー2021」
    • Related Report
      2021 Research-status Report
  • [Presentation] The intersection polynomial of a virtual knot2021

    • Author(s)
      Shin Satoh
    • Organizer
      The 16th East Asian Conference on Geometric Topology
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] 仮想結び目の交差多項式2021

    • Author(s)
      佐藤進
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report
  • [Presentation] The intersection polynomials of a virtual knot2020

    • Author(s)
      佐藤進
    • Organizer
      東京大学トポロジー火曜セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Writhe polynomials and shell moves for virtual knots and links2019

    • Author(s)
      Shin Satoh
    • Organizer
      Intelligence of Low-dimensional Topology
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Welded braids and 2-dimensional braids of ribbon surface-links2019

    • Author(s)
      Shin Satoh
    • Organizer
      Loops in Leeds
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the triple point number in surface-knot theory2019

    • Author(s)
      Shin Satoh
    • Organizer
      Unifying 4-Dimensional Knot Theory
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 正則ローズマン変形で表される局所変形について2019

    • Author(s)
      佐藤進
    • Organizer
      那覇市伝統工芸館会議室
    • Related Report
      2019 Research-status Report
    • Invited

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi