Project/Area Number |
19K03472
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 11020:Geometry-related
|
Research Institution | Osaka Metropolitan University (2022) Osaka City University (2019-2021) |
Principal Investigator |
Masuda Mikiya 大阪公立大学, 大学院理学研究科, 特任教授 (00143371)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | Toric Topology / convex polytope / torus orbit closure / flag variety / Hessenberg variety / トーリックトポロジー / トーラス軌道 / 対称群の表現 / Stanley-Stembridge予想 / 凸多面体 / 置換 / トーリック幾何 / コホモロジー剛性問題 |
Outline of Research at the Start |
トーリックトポロジーは、トーリック幾何をトポロジーの観点から展開するということから始まったが、そこでの基本精神は、トーラス群作用を持つ空間のトポロジー、幾何、組合せ的側面を、トーラス群作用を用いて調べることである。したがって、取り扱う幾何学的対象を、トーリック多様体やそのトポロジー版であるトーラス多様体などに限る必要はないし、限るべきではない。グラスマン多様体や旗多様体およびそれらの部分多様体など、一般にトーリック多様体ではないが自然なトーラス作用をもつ重要な幾何学的対象があり、トーリック多様体との関連を睨みながら、それらの多様体の研究を進める。
|
Outline of Final Research Achievements |
I continued joint work with Eunjeong Lee and Seonjeong Park on the geometry and topology of torus orbit closures in the flag variety and related combonatorics. In particular, we wrote a survey article on this topis as a chapter of the Handbook of Combinatorial Algebraic Geometry: Subvarieties ofthe Flag Variety. I also worked with Takashi Sato on the cohomology ring of a regular semisimple Hessenberg variety. The ultimate goal of this work is to prove a long standing Stanley-Stembridge conjecture in graph theory affirmatively.
|
Academic Significance and Societal Importance of the Research Achievements |
旗多様体におけるトーラス軌道の閉包の研究は,1980年代にGelfand-Serganova, Kryachko らによって初められた.その後,トーラス軌道の閉包の特異性など調べられているが,トポロジーに関しては研究されていなかったように思われる.我々は,旗多様体におけるSchubert variety もっと一般に Richardson variety における一般的なトーラス軌道の閉包の幾何・トポロジーと組合せ論の関係を調べた.これは今後の研究の礎になると期待している.
|