• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Structures of knots and quandle cocycle invariants

Research Project

Project/Area Number 19K03476
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionTsuda University

Principal Investigator

Inoue Ayumu  津田塾大学, 学芸学部, 准教授 (10610149)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords結び目 / カンドル / ファイバー結び目 / 正多胞体 / ザイフェルト曲面 / 空間グラフ / 対称性 / 多胞体 / タイル貼り / 正則タイル貼り / 幾何構造
Outline of Research at the Start

結び目とは絡まった紐のことである.一見して乱雑に絡まっている結び目でも,ある構造に着目すれば,特徴を見出せることがある.その特徴を研究することは,例えば高分子といった複雑に絡み合った物質の特性を研究する上でも,有益である.そこで,カンドルと呼ばれる代数を活用して,結び目が備える種々の構造を研究する.

Outline of Final Research Achievements

In mathematics, a knot means a knotted circle in the 3-dimensional space. A quandle is an algebraic system. For each quandle and each knot, we have quandle cocycle invariants of the knot, which are algebraic quantities for the knot.
Each knot is equipped with various kinds of structures, which characterize the knot. It is known experientially that quandle cocycle invariants of a knot detect several structures of the knot. The aim of this research is to investigate how or why quandle cocycle invariants detect structures of a knot. In accordance with this program, the researcher respectively figures out a relationship between a quandle cocycle invariant and "fiber structure", "twist-spinning structure" or "Seifert surface structure" of a knot.

Academic Significance and Societal Importance of the Research Achievements

紐状の物質の絡まりは,例えば高分子や DNA など,自然界に多く存在する.その絡まりが備える「構造」を理解することは,物性や現象を理解する上においても,非常に重要である.本研究を通じて結び目が備える構造に対する理解が進んだことは,結び目理論の発展のみならず,科学全般の進展においても意義があると言える.

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (11 results)

All 2022 2020 2019

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (9 results) (of which Int'l Joint Research: 2 results,  Invited: 4 results)

  • [Journal Article] Crossing numbers and rotation numbers of cycles in a plane immersed graph2022

    • Author(s)
      Ayumu Inoue, Naoki Kimura, Ryo Nikkuni and Kouki Taniyama
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 31 Issue: 11

    • DOI

      10.1142/s0218216522500766

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the knot quandle of a fibered knot, finiteness and equivalence of knot quandles2019

    • Author(s)
      Inoue Ayumu
    • Journal Title

      Topology and its Applications

      Volume: 265 Pages: 106811-106811

    • DOI

      10.1016/j.topol.2019.07.005

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Quandle 理論入門(対称性を記述する言語として)2022

    • Author(s)
      井上 歩
    • Organizer
      大阪公立大学数学研究所談話会
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] A survey of a method to obtain an aimed minimal Seifert surface from each canonical Seifert surface2022

    • Author(s)
      井上 歩
    • Organizer
      拡大KOOKセミナー2022
    • Related Report
      2022 Annual Research Report
  • [Presentation] ザイフェルト曲面の改変について2022

    • Author(s)
      井上 歩
    • Organizer
      東京女子大学トポロジーセミナー
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Alteration of Seifert surfaces2022

    • Author(s)
      井上 歩
    • Organizer
      Geometry in low dimensions 2022
    • Related Report
      2022 Annual Research Report
  • [Presentation] 結び目に付随する代数系「カンドル」と対称性2020

    • Author(s)
      井上 歩
    • Organizer
      非線形波動から可積分系へ
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] 正多胞体が定めるカンドルについて2020

    • Author(s)
      井上 歩
    • Organizer
      カンドルと対称空間
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] The fibered knots whose knot quandles are finite2020

    • Author(s)
      Ayumu Inoue
    • Organizer
      The 15th East Asian Conference on Geometric Topology
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 三葉結び目を分岐集合とする3次元球面の有限巡回分岐被覆空間の三角形分割2020

    • Author(s)
      井上 歩
    • Organizer
      2019年度琉球結び目セミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] The twist-spinning of classical knots whose knot quandles are finite2019

    • Author(s)
      Ayumu Inoue
    • Organizer
      Knots in Tsushima 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi