• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometrical structures on manifolds which have the action of the exceptional Lie group G2

Research Project

Project/Area Number 19K03482
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionMeijo University

Principal Investigator

Hashimoto Hideya  名城大学, 理工学部, 教授 (60218419)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywordsケーリー代数 / 概複素構造 / 6次元球面 / コサイクル条件 / Hirzebruch 曲面 / Fibre bundle / Calabi- Eckmann 多様体 / 例外型単純 Lie 群 G2 / Clifford 環 / 6次元球面上の概複素構造 / Hopf 束 / Cartan超曲面 / Cocycle 構成 / Calabi-Eckmann 多様体 / 例外型単純リー群 / 幾何構造 / 特性類 / 等径超曲面 / ファイバー束 / 例外型単純Lie群G2 / 四元数ケーラー多様体 / isoparametric 超曲面 / スピノール群 / Clifford環 / Maurer-Cartan form / 例外型単純 Lie 群G2 / 4元数ケーラー多様体 / 特異軌道 / Maurer Cartan form / 例外型単純Lie群 / 佐々木構造 / symplectic 構造 / 複素構造 / Twisor space / 四元数構造 / 例外型単純Lie群 G2 / twistor space / hyperkahler structure / 複素接触構造
Outline of Research at the Start

例外型単純 Lie 群 G2 の作用する種々の等質空間のfibre bundle 構造を実現する写像を具体的に記述し、かつ、それぞれの等質空間に付随する幾何構造を具体化すること。G2/U(2)+ に関連した多様体(実12次元の非compact)上のhyperkahler 構造を G2 の 表現を用いて具体的に記述すること。G2/U(2)+ と G2/U(2)- の複素多様体 (実 10 次元) の幾何構造を記述すること。さらに、G2/U(2)+ に作用する 非 compact な複素 5 次元 Lie 部分群を具体化する。

Outline of Final Research Achievements

Let G2 be the 14dimensional exceptional Lie group. We study geometrical structures of manifolds which are obtained as the orbit under the action of G2. For example the 6-dimensional sphere is represented by the homogeneous space G2/SU(3). Then we can construct the non-integrable almost complex structure on the 6-dimensional sphere. We want to know the deformation theory of almost complex structures on a 6-dimensional sphere. To do this, we consider S1 fibre bundles over a 2-dimensional sphere, as a prototype. We obtain some relationship of the deformation of complex structures on the total space of 2-dimensional torus bundle over the Hirzebruch surfaces.

Academic Significance and Societal Importance of the Research Achievements

複素多様体上の変形理論は研究されているが、6次元球面上の概複素構造の変形理論についてはほとんど研究がなされていない。その理由は6次元球面上のSU(3)束の具体的な構成が複雑であるためである。これをコサイクル条件を用いて実現することを目指しているが、ケーリー代数が結合法則を満たさないため困難が生じている。そのため、最も簡単な2次元球面上のS1 束のコサイクル条件を研究することで、Hirzebruch surafce 上の2次元トーラス束の全空間上に複素構造を導入し、その変形理論との関連を記述した。さらに、その6次元球面に対応する理論構築の道筋を見出したことが本研究の学術的意義である。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (14 results)

All 2025 2024 2023 2022 2020 2019

All Journal Article (5 results) (of which Peer Reviewed: 5 results) Presentation (5 results) (of which Int'l Joint Research: 1 results,  Invited: 5 results) Book (3 results) Funded Workshop (1 results)

  • [Journal Article] Representation of the complex structure of the T2 bundle over the Hirzebruch surface CP2#CP22025

    • Author(s)
      Hashimoto Hideya, Ohashi Misa
    • Journal Title

      Modern Approaches to Differential Geometry and its Related Fields

      Volume: 1

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] ON THE RELATIONSHIPS BETWEEN HOPF FIBRATIONS AND CARTAN HYPERSURFACES IN SPHERES2022

    • Author(s)
      HASHIMOTO Hideya
    • Journal Title

      New Horizons in Differential geometry and its related fields

      Volume: 1 Pages: 139-149

    • DOI

      10.1142/9789811248108_0009

    • ISBN
      9789811248092, 9789811248108
    • Related Report
      2022 Research-status Report 2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Non-flat totally geodesic surfaces of SU(4)/SO(4) and fibre bundle structures related to SU(4)2020

    • Author(s)
      Hideya Hashimoto, Misa Ohashi and Kazuhiro Suzuki
    • Journal Title

      Recent topics in differential geometry and its related fields

      Volume: - Pages: 149-161

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the automorphism groups of isoparametric hyperesurfaces of S72020

    • Author(s)
      Hideya Hashimoto and Misa Ohashi
    • Journal Title

      Advanced studies in pure mathematics, Differential Geometry and Tanaka Theory

      Volume: 82 Pages: 75-85

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Relationships among non-flat totally geodesic surfaces in symmetric spaces of type A and their polynomial representations2019

    • Author(s)
      Hideya Hashimoto, Misa Ohashi and Kazuhiro Suzuki
    • Journal Title

      Kodai Math. J.

      Volume: 42 Pages: 203-222

    • NAID

      130007674788

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Cartan 超曲面と Hopf 束2024

    • Author(s)
      橋本英哉
    • Organizer
      名工大幾何学講演会 2024
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] GL+(2,R)上の左不変計量2020

    • Author(s)
      橋本 英哉
    • Organizer
      淡路島幾何学研究集会2020
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Geometrical structures on homogeneous spaces related to G22019

    • Author(s)
      Hideya Hashimoto
    • Organizer
      The Conference Differential Geometry and its Applications
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] G2に関連した等質空間の幾何構造の実現とその応用2019

    • Author(s)
      橋本 英哉
    • Organizer
      多様体上の微分方程式
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] G2のグラスマン幾何2019

    • Author(s)
      橋本 英哉
    • Organizer
      還暦記念研究集会「Hideya60」 (名古屋工業大学)
    • Related Report
      2019 Research-status Report
    • Invited
  • [Book] Modern Approaches to Differential Geometry and its Related Fields2024

    • Author(s)
      Adachi Toshiaki, Hashimoto Hideya, Sakane Yusuke
    • Total Pages
      210
    • Publisher
      World Scientific
    • Related Report
      2023 Annual Research Report
  • [Book] New Horizons in Differential geometry and its related fields2022

    • Author(s)
      Toshiaki Adachi, Hideya Hashimoto
    • Total Pages
      248
    • Publisher
      World Scientific
    • ISBN
      9789811248092
    • Related Report
      2022 Research-status Report 2021 Research-status Report
  • [Book] Recent Topics in Differential Geometry and its Related Fields2020

    • Author(s)
      Toshiaki ADACHI, Hideya HASHIMOTO
    • Total Pages
      209
    • Publisher
      World Scienticfic
    • ISBN
      9789811206689
    • Related Report
      2019 Research-status Report
  • [Funded Workshop] ICDG20232023

    • Related Report
      2023 Annual Research Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi