• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of geometric structures of 3-dimensional cone hyperbolic manifolds using the families of canonical fundamental polyhedra

Research Project

Project/Area Number 19K03497
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionOsaka Metropolitan University (2022-2023)
Osaka City University (2019-2021)

Principal Investigator

Akiyoshi Hirotaka  大阪公立大学, 大学院理学研究科, 教授 (80397611)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords双曲幾何 / 錐多様体 / 基本多面体 / 実射影構造 / 軌道体 / 基本領域 / 凸集合 / 曲面束 / クライン群 / 負曲率幾何 / 離散群
Outline of Research at the Start

3次元多様体が許容するThurstonの意味での幾何構造相互の関係を調べるには,構造の滑らかさを一部で崩すことにより実現される錐特異点付きの構造を用いることが有効である.本研究では,もっとも重要と思われる錐双曲構造の変形と他の幾何構造への退化を,標準的な基本領域を用いることで詳細に理解することを目指すものである.その基礎をなす理論の構築のため,2橋結び目錐多様体からなる無限族を中心的に研究する.直接的な応用として,体積の小さな数論的クライン群の決定への寄与なども期待される.

Outline of Final Research Achievements

The main results obtained in this project can be roughly divided into three categories: a detailed proof of a definitive property for non-free two-parabolic Klein groups, which includes the Riley slice; observations and related numerical experiments on the stability of the combinatorial structure of canonical fundamental polyhedra for a certain families of cone hyperbolic 3-manifolds; and introducing a new viewpoint on the analysis of the combinatorial structure of the ends, which is a bottleneck in the study of noncompact hyperbolic manifolds from the viewpoint of fundamental polyhedra. The new viewpoint is closely related to the study of real projective manifolds, and is expected to form an important basis for future research on degenerations and transitions of infinite volume hyperbolic structures from the viewpoint of real projective geometry.

Academic Significance and Societal Importance of the Research Achievements

本研究では3次元双曲幾何を中心的な研究対象とする.3次元空間内の結び目はDNAや高分子などの数学モデルのうち最も基本的なものと考えられるが,その位相的構造の解明はそれら具体的な実在を対象とする自然科学分野においても重要な役割を担っている.非常に多くの結び目が双曲幾何により支配され,その幾何構造は標準的な基本多面体により組合せ的に理解可能であることが知られており,本研究はその理解をさらに進めるための一ステップである.本研究で発見された新たな視点は,そうした組合わせ構造がより広い数学的対象に対しても有効な手掛かりとなることを示唆するという意味で大変興味深いものである.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (22 results)

All 2024 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (4 results) Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Open Access: 1 results,  Peer Reviewed: 3 results) Presentation (12 results) (of which Int'l Joint Research: 4 results,  Invited: 9 results) Remarks (1 results) Funded Workshop (1 results)

  • [Int'l Joint Research] Pusan National University/Kyungpook National University(韓国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] シンガポール国立大(シンガポール)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] 韓国科学技術院, KAIST(韓国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] 奈良女子大(日本)

    • Related Report
      2020 Research-status Report
  • [Journal Article] An extension of Ford domain2022

    • Author(s)
      Akiyoshi,Hirotaka
    • Journal Title

      数理解析研究所講究録

      Volume: 2227 Pages: 53-61

    • Related Report
      2022 Research-status Report
    • Open Access
  • [Journal Article] Dirichlet domains for some one-cone torus bundles2021

    • Author(s)
      Akiyoshi Hirotaka
    • Journal Title

      Topology and its Applications

      Volume: 301 Pages: 107490-107490

    • DOI

      10.1016/j.topol.2020.107490

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Classification of non-free Kleinian groups generated by two parabolic transformations2021

    • Author(s)
      Akiyoshi Hirotaka、Ohshika Ken’ichi、Parker John、Sakuma Makoto、Yoshida Han
    • Journal Title

      Transactions of the American Mathematical Society

      Volume: 374 Issue: 3 Pages: 1765-1814

    • DOI

      10.1090/tran/8246

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Thin representations for the one-cone torus group2019

    • Author(s)
      Hirotaka Akiyoshi
    • Journal Title

      Topology and its Applications

      Volume: 264 Pages: 115-144

    • DOI

      10.1016/j.topol.2019.06.025

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] 正八角形から得られる種数2の閉双曲曲面のディリクレ領域について2024

    • Author(s)
      秋吉宏尚
    • Organizer
      拡大版「リーマン面・不連続群論」研究集会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Finding Dirichlet domains2023

    • Author(s)
      Hirotaka Akiyoshi
    • Organizer
      The 14th TAPU-KOOK Joint Seminar on Knots and Related Topics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Finiteness of the combinatorial structures of Dirichlet domains2023

    • Author(s)
      Hirotaka Akiyoshi
    • Organizer
      Iberoamerican and Pan Pacific International Conference on Topology and its Applications
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Finding Dirichlet domains of hyperbolic manifolds by computer2023

    • Author(s)
      秋吉宏尚
    • Organizer
      研究集会「トポロジーとコンピュータ 2023」
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 閉双曲曲面のディリクレ領域に関する数値実験について2023

    • Author(s)
      秋吉宏尚
    • Organizer
      早稲田双曲幾何幾何学的群論セミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] An extension of Ford domain2022

    • Author(s)
      Hirotaka Akiyoshi
    • Organizer
      The 13th KOOK-TAPU Joint Seminar on Knots and Related Topics
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] An extension of Ford domain2022

    • Author(s)
      Hirotaka Akiyoshi
    • Organizer
      Intelligence of Low-dimensional Topology
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] ディリクレ領域の有限性について2022

    • Author(s)
      秋吉宏尚
    • Organizer
      拡大 KOOK セミナー 2022
    • Related Report
      2022 Research-status Report
  • [Presentation] 錐特異点つきトーラス束のディリクレ領域について2022

    • Author(s)
      秋吉宏尚
    • Organizer
      日本数学会 2022年度年会
    • Related Report
      2021 Research-status Report
  • [Presentation] 双曲多様体の基本多面体と射影モデル2021

    • Author(s)
      秋吉宏尚
    • Organizer
      研究集会「拡大KOOKセミナー2021」
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 錐特異点つきトーラス束のディリクレ領域について2020

    • Author(s)
      秋吉宏尚
    • Organizer
      研究集会「拡大KOOKセミナー2020」
    • Related Report
      2020 Research-status Report
  • [Presentation] Dirichlet domains for one-cone torus bundles2019

    • Author(s)
      Hirotaka Akiyoshi
    • Organizer
      Third Pan-Pacific International Conference on Topology and Applications
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] The 13th KOOK-TAPU and The 15th GSW

    • URL

      http://www.sci.osaka-cu.ac.jp/OCAMI/joint/KOOK-TAPU_&_GSW/index.html

    • Related Report
      2022 Research-status Report
  • [Funded Workshop] The 13th KOOK-TAPU Joint Seminaron Knots and Related Topics and The 15th Graduate Student Workshop on Mathematics2022

    • Related Report
      2022 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi