• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Pin(2)-monopole equations and 4-dimensional topology

Research Project

Project/Area Number 19K03506
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionFukushima Medical University (2022-2023)
Osaka Medical and Pharmaceutical University (2019-2021)

Principal Investigator

Nobuhiro Nakamura  福島県立医科大学, 公私立大学の部局等, 教授 (10512171)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2023: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywordsゲージ理論 / 4次元 / トポロジー / 4次元トポロジー / 4次元トポロジー / 幾何学
Outline of Research at the Start

本研究は,Pin(2)モノポール方程式の理論的発展,および4次元多様体のトポロジーや幾何への応用の可能性を深く追求することを目的とする.ここで Pin(2)モノポール方程式とは,spin-c 構造の複素共役から得られるSeiberg-Witten 方程式の変種である.具体的には以下の項目の研究を行う.
1. 実構造をもつ複素曲面上のPin(2)モノポール方程式
2. 安定コホモトピー版のPin(2)モノポール不変量
3. Pin(2)モノポール Floer 理論

Outline of Final Research Achievements

Considering Pin(2)-monopole equations on families of 4-manifolds, we obtained some applications on topology of diffeomorphism groups of 4-manifolds. We proved a non-vanishing theorem of families Seiberg-Witten invariants for spin families of 4-manifolds. As an application, we construct topological fiber bundles such that their total spaces are smoothable, but they are non-smoothable as fiber bundles. By using spin bordism invariants, we prove the mod 2 version of the simple type conjecture is true under some topological conditions.

Academic Significance and Societal Importance of the Research Achievements

我々の行った族の研究は,Pin(2)モノポール方程式によるものも,スピン多様体に対するものも,族のゲージ理論を実質的に発展させるものである.さらにその応用は微分同相群に対する新たな知見を切り拓くものものとなっている点が意義深い.また mod 2 simple type についての研究は,この四半世紀ほとんど進展が見られなかった simple type 予想を着実に前進させるものである点が意義深い.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (14 results)

All 2024 2023 2022 2021 2020 2019 Other

All Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (4 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results) Remarks (6 results)

  • [Journal Article] Constraints on families of smooth 4?manifoldsfrom Pin(2)-monopole2023

    • Author(s)
      Konno Hokuto、Nakamura Nobuhiro
    • Journal Title

      Algebraic & Geometric Topology

      Volume: 23 Issue: 1 Pages: 419-438

    • DOI

      10.2140/agt.2023.23.419

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] The simple type conjecture for mod 2 Seiberg-Witten invariants2022

    • Author(s)
      Kato Tsuyoshi、Nakamura Nobuhiro、Yasui Kouichi
    • Journal Title

      Journal of the European Mathematical Society

      Volume: - Issue: 12 Pages: 4869-4877

    • DOI

      10.4171/jems/1297

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Rigidity of the mod 2 families Seiberg-Witten invariants and topology of families of spin 4-manifolds2021

    • Author(s)
      Tsuyoshi Kato , Hokuto Konno and Nobuhiro Nakamura
    • Journal Title

      Compositio Mathematica

      Volume: 157 Issue: 4 Pages: 770-808

    • DOI

      10.1112/s0010437x2000771x

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Real structures and the Pin(2)-monopole equations2020

    • Author(s)
      Nobuhiro Nakamura
    • Journal Title

      International Journal of Mathematics

      Volume: 31 Issue: 14 Pages: 2050119-2050119

    • DOI

      10.1142/s0129167x20501190

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] Conjectures on inequalities of 10/8-type2024

    • Author(s)
      中村信裕
    • Organizer
      Special Workshop in Gauge Theory
    • Related Report
      2023 Annual Research Report
  • [Presentation] Upper bounds for virtual dimensions of Seiberg-Witten moduli spaces2023

    • Author(s)
      中村信裕
    • Organizer
      Gauge Theory in Kyoto(京都大学, 2023.3.22-24)
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Families Seiberg-Witten invariants and topology of spin families of 4-manifolds2020

    • Author(s)
      中村信裕
    • Organizer
      研究集会 4-dimensional Topology and Gauge Theory
    • Related Report
      2019 Research-status Report
  • [Presentation] Homotopy non-equivalence of homeomorphism and diffeomorphism groups of spin 4-manifolds2019

    • Author(s)
      中村信裕
    • Organizer
      研究集会「4次元トポロジー」
    • Related Report
      2019 Research-status Report
  • [Remarks] 中村信裕のホームページ

    • URL

      https://kansai-gauge.squares.net/nakamura/

    • Related Report
      2023 Annual Research Report 2022 Research-status Report
  • [Remarks] Gauge Theory Seminar

    • URL

      https://kansai-gauge.squares.net/index.html

    • Related Report
      2023 Annual Research Report 2022 Research-status Report
  • [Remarks] Special Workshop in Gauge Theory

    • URL

      https://kansai-gauge.squares.net/swg/index.html

    • Related Report
      2023 Annual Research Report
  • [Remarks] 中村信裕のホームページ

    • URL

      http://kansai-gauge.squares.net/nakamura/

    • Related Report
      2021 Research-status Report
  • [Remarks] Gauge Theory Seminar

    • URL

      http://kansai-gauge.squares.net/index.html

    • Related Report
      2021 Research-status Report
  • [Remarks] 中村信裕のホームページ

    • URL

      https://www.osaka-med.ac.jp/deps/mat/nakamura/index.html

    • Related Report
      2020 Research-status Report 2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi