• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Connection problems of hypergeometric functions from the view point of higher dimensional Erdelyi cycles and their intersection numbers

Research Project

Project/Area Number 19K03517
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionOsaka University

Principal Investigator

Mimachi Katsuhisa  大阪大学, 大学院情報科学研究科, 教授 (40211594)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Discontinued (Fiscal Year 2022)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords複素解析的線形微方程式 / 超幾何函数 / 接続問題 / Erdelyiサイクル / 交叉数 / Appellの超幾何函数 / Lauricellaの超幾何函数 / ねじれサイクル / 複素積分 / モノドロミー / 複素解析的微分方程式 / 局所系係数のホモロジー / 複素解析的線形微分方程式 / Erdelyi サイクル / ファインマン積分 / Heckman-Opdam超幾何函数
Outline of Research at the Start

Appell, Lauricellaによる古典的多変数超幾何函数からHeckman-Opdamの超幾何函数やKnizhnik-Zamolodchikov方程式の解などの現代的超幾何函数に至るまでの接続問題を総合的に考察し,一般のn変数で解ける接続問題の例を発見・蓄積し,系統的な整理によって次の段階へ発展させることが本研究の目的である.具体的なテーマの代表例は以下の通り.①LauricellaのF_D, F_A, F_Cに付随する接続問題を解く.②Heckman-Opdamの超幾何函数に付随する接続問題を解く.③Knizhnik-Zamolodchikov方程式の解に付随する接続問題を解く.

Outline of Final Research Achievements

We found integral representations of Appell's $F_2, F_3$, Horn's $H_2$ and Olsson's $F_P$ functions, and determined some connection formulas among them. We constructed a connection relation associated with Lauricella's $E_D$ equations, and, as its application, we give an affirmative answer to the conjecture by Shimeno-Tamaoka about the Harish-Chandra expansion of the Heckman-Opdam hypergeometric function of type $A$. We solved a connection problem associated with Lauricella's $E_A$ equations explicitly. We solved the connection problem associated with Apell's $E_1$ equation almost in the final form.

Academic Significance and Societal Importance of the Research Achievements

本研究では,常微分方程式や完全積分可能な偏微分方程式である超幾何微分方程式の解に対する接続問題を解くことを主題としているが,複素解析的線形微分方程式の解の大域的性質を明らかにするために,その解がみたす接続関係を決定せよという問いは最も基本的であり究極的である.しかし,いっぽうで,接続問題が解けている例は非常に少ない.今回得た結果は,解の大域的理論のさらなる発展の礎になるものと期待される.

Report

(4 results)
  • 2022 Final Research Report ( PDF )
  • 2021 Annual Research Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (6 results)

All 2022 2020 2019

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (3 results) (of which Int'l Joint Research: 2 results,  Invited: 3 results)

  • [Journal Article] Connection formulas related with Appell's hypergeometric function $F_1$2022

    • Author(s)
      Katsuhisa Mimachi
    • Journal Title

      PoS (Proceedings of Science)

      Volume: 383 Pages: 010-010

    • DOI

      10.22323/1.383.0010

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] INTEGRAL REPRESENTATIONS OF APPELL&apos;S <i>F</i><sub>2</sub>, <i>F</i><sub>3</sub>, HORN&apos;S <i>H</i><sub>2</sub> AND OLSSON&apos;S <i>F<sub>P</sub></i> FUNCTIONS2020

    • Author(s)
      Katsuhisa Mimachi
    • Journal Title

      Kyushu Journal of Mathematics

      Volume: 74 Issue: 1 Pages: 1-13

    • DOI

      10.2206/kyushujm.74.1

    • NAID

      130007873247

    • ISSN
      1340-6116, 1883-2032
    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] CONNECTION FORMULAS RELATED WITH APPELL&apos;S <i>F</i><sub>2</sub>, HORN&apos;S <i>H</i><sub>2 </sub>AND OLSSON&apos;S <i>F</i><i><sub>P </sub></i>FUNCTIONS2020

    • Author(s)
      Katsuhisa Mimachi
    • Journal Title

      Kyushu Journal of Mathematics

      Volume: 74 Issue: 1 Pages: 15-42

    • DOI

      10.2206/kyushujm.74.15

    • NAID

      130007873237

    • ISSN
      1340-6116, 1883-2032
    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Appellの$E_1$方程式系の解の接続問題2022

    • Author(s)
      Katsuhisa Mimachi
    • Organizer
      アクセサリー・パラメーター研究会
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 微分方程式に付随する接続問題への交叉理論の応用2020

    • Author(s)
      Katsuhisa Mimachi
    • Organizer
      ``q, q and q,'' 神戸大学理学部, 2020.2.19--21
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Application of the intersection theory to the connection problem related with differential equations2019

    • Author(s)
      Katsuhisa Mimachi
    • Organizer
      MathemAmplitudes 2019 : Intersection Theory and Feynman Integrals, 18--20 December 2019, University of Padova, Padova, Italy
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi