• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on variations of the moduli of open Riemann surfaces under pseudoconvexity

Research Project

Project/Area Number 19K03522
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionKyoto Sangyo University (2022-2023)
Osaka City University (2019-2021)

Principal Investigator

Hamano Sachiko  京都産業大学, 理学部, 教授 (10469588)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords解析学 / 複素解析 / 多変数関数論 / 擬凸領域 / リーマン面 / モジュライ / 等角写像
Outline of Research at the Start

リーマン面がコンパクトであるならば、その位相的性質は種数で、解析的性質はそのモジュライで完全に決定される。一方で、無限型リーマン面の分類理論が示すように、開リーマン面のもつ複素解析的にもポテンシャル論的にも極めて豊富な多様性は、リーマン面の変形族や変形空間にも及ぶはずである。そこで、本研究はそのような開リーマン面の分類に対しても、西野利雄氏の剛性定理に代表される擬凸領域の一様性定理がどこまで成立するかを問い、全空間の擬凸性を反映する良いモジュラスを探し出すことで、開リーマン面のモジュライを用いた多変数関数論を展開する。

Outline of Final Research Achievements

For a marked open Riemann surface R of finite genus g and a real g-vector a=(a_1,...,a_g), we introduced the a-span of R, defined in terms of canonical semi-exact differentials on R normalized by a, and established a new relation between the a-span and the moduli disk of closings of R. From the viewpoint of several complex variables, a variational formula of the a-span of R(t) is obtained for a smooth family of open Riemann surfaces R(t) with a complex parameter t in a disk. As an application, we proved that if the total space is a two-dimensional pseudoconvex domain fibered by open Riemann surfaces R(t) of the same topological type, then the a-span of R(t) is subharmonic for t. This means the subharmonicity of the diameter of the a-directional moduli disk for higher genera when the total space is pseudoconvex.

Academic Significance and Societal Importance of the Research Achievements

コンパクト複素多様体の解析族に対する剛性は小平-Spencer理論をふまえて解決済みであるが、開リーマン面の変形族に関するものは未解決である。無限型リーマン面の分類理論が示すように、開リーマン面のもつ複素解析的にもポテンシャル論的にも極めて豊富な多様性は、開リーマン面の変形族や変形空間にも及ぶはずである。そこで、本研究ではそのような開リーマン面の変形族に対しても、西野利雄氏の剛性定理に代表される擬凸領域の一様性定理がどこまで成立するかを問い、全空間の擬凸性を反映する良いモジュライを構成することで、開リーマン面のモジュライを用いた多変数関数論の展開を試みた。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (33 results)

All 2024 2023 2022 2021 2020 2019 Other

All Journal Article (6 results) (of which Open Access: 1 results,  Peer Reviewed: 5 results) Presentation (22 results) (of which Int'l Joint Research: 5 results,  Invited: 16 results) Remarks (4 results) Funded Workshop (1 results)

  • [Journal Article] Teichm?ller Theory: Classical, Higher, Super and Quantum2024

    • Author(s)
      Ohshika Ken’ichi、Papadopoulos Athanase、Penner Robert C.、Katharina Wienhard Anna
    • Journal Title

      Oberwolfach Reports

      Volume: 20 Issue: 3 Pages: 1843-1892

    • DOI

      10.4171/owr/2023/33

    • Related Report
      2023 Annual Research Report
    • Open Access
  • [Journal Article] Directional moduli and pseudoconvexity (accepted: 17 July 2023, 印刷中)2024

    • Author(s)
      Sachiko Hamano
    • Journal Title

      The conference in the honour of 65th birthday of Athanase Papadopoulos entitled `Essays on geometry` (Birkhauser/Springer)

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Variational formulas for principal functions and applications2022

    • Author(s)
      Hamano Sachiko
    • Journal Title

      Advanced Lectures in Mathematics 49: Teichmuller Theory and Grothendieck-Teichmuller Theory (Ed. L. Ji, A. Papadopoulos, W. Su), Higher Education Press, Beijing

      Volume: 49

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Variational formulas for principal functions and applications2022

    • Author(s)
      Sachiko Hamano
    • Journal Title

      Higher Educations Press and International Press Beijing-Boston, Teichmuller Theory and Grothendieck-Teichmuller Theory, ALM

      Volume: 49

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] On rigidity of pseudoconvex domains fibered by open Riemann surfaces according to directional moduli2021

    • Author(s)
      Hamano Sachiko
    • Journal Title

      Mathematische Zeitschrift

      Volume: 300 Issue: 1 Pages: 979-993

    • DOI

      10.1007/s00209-021-02822-7

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Variational formulas for principal functions and applications2020

    • Author(s)
      Sachiko Hamano
    • Journal Title

      Teichmuller theory and its impact: Advanced Lectures in Mathematics

      Volume: ー

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] 領域の変動に関する2階変分公式と擬凸領域2024

    • Author(s)
      濱野 佐知子
    • Organizer
      「等角写像論・値分布論」合同研究集会(九州大学 西新プラザ)
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Subharmonicity of a span associated with the moduli disk2024

    • Author(s)
      濱野 佐知子
    • Organizer
      拡大版「リーマン面・不連続群論拡大研究集会」第一部:松江THEファイナル(島根大学)
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Subharmonicity of a span associated with the moduli disk2023

    • Author(s)
      Sachiko Hamano
    • Organizer
      HAYAMA Symposium on Complex Analysis in Several Variables XXIV(Shonan village center, JAPAN)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Subharmonicity of a span associated with the moduli disk2023

    • Author(s)
      Sachiko Hamano
    • Organizer
      Oberwolfach Workshop 2331-Teichmuller Theory: Classical, Higher, Super and Quantum(The Mathematisches Forschungsinstitut Oberwolfach, ドイツ)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Subharmonicity of a span associated with the moduli disk2023

    • Author(s)
      濱野 佐知子
    • Organizer
      2023年度研究集会「リーマン面に関連する位相幾何学」(東京大学)
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] The period matrices of an open Riemann surface and its closings in the Siegel upper half space2023

    • Author(s)
      濱野佐知子
    • Organizer
      2022年度「リーマン面・不連続群論」研究集会
    • Related Report
      2022 Research-status Report
  • [Presentation] The period matrices of an open Riemann surface and its closings in the Siegel upper half-space2023

    • Author(s)
      濱野佐知子
    • Organizer
      Workshop: Quasi-conformal mappings, hyperbolic geometry and Riemann surfaces
    • Related Report
      2022 Research-status Report
  • [Presentation] Variational formulas for hydrodynamic differentials and application to the simultaneous uniformization problem2022

    • Author(s)
      濱野佐知子
    • Organizer
      2022年度 多変数関数論冬セミナー
    • Related Report
      2022 Research-status Report
  • [Presentation] The period matrices of an open Riemann surface and its closings in the Siegel upper half-space2022

    • Author(s)
      Sachiko Hamano
    • Organizer
      Conference in honor of 65th birthday of Athanase Papadopoulos(Galatasaray University, トルコ)
    • Related Report
      2022 Research-status Report
  • [Presentation] On rigidity of pseudoconvex domains fibered by open Riemann surfaces according to directional moduli2022

    • Author(s)
      濱野佐知子
    • Organizer
      大阪市立大学数学研究所談話会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] The period matrices of an open Riemann surface and its closings in the Siegel upper half space2022

    • Author(s)
      濱野佐知子
    • Organizer
      日本数学会年会
    • Related Report
      2021 Research-status Report
  • [Presentation] The period matrices of an open Riemann surface and its closings in the Siegel upper half space2021

    • Author(s)
      濱野佐知子
    • Organizer
      東工大複素解析セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] On rigidity of pseudoconvex domains fibered by open Riemann surfaces according to directional moduli2021

    • Author(s)
      濱野佐知子
    • Organizer
      Prospects of Theory of Riemann Surface
    • Related Report
      2021 Research-status Report
  • [Presentation] The hydrodynamic period matrices and closings of an open Riemann surface of finite genus2021

    • Author(s)
      濱野佐知子
    • Organizer
      東京大学・複素解析幾何セミナー (東京大学大学院数理科学研究科)
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] On variational formulas for hydrodynamic differentials and its application2020

    • Author(s)
      Sachiko Hamano
    • Organizer
      The 18th OCAMI-RIRCM Joint Differential Geometry Workshop on "Differential Geometry of Submanifolds in Symmetric Spaces and Related Problems" (大阪市立大学)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Rigidity of the directional moduli on pseudoconvex domains fibered by open Riemann surfaces2019

    • Author(s)
      濱野佐知子
    • Organizer
      2019年度多変数関数論冬セミナー (東北大学 AIMR本館)
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 開リーマン面のモジュライの多変数的性質について2019

    • Author(s)
      濱野佐知子
    • Organizer
      「等角写像論・値分布論」合同研究集会 (東北大学 情報科学研究科)
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] On variational formula for hydrodynamic differentials and its application2019

    • Author(s)
      Sachiko Hamano
    • Organizer
      The 25th Symposium on Complex Geometry (石川県政記念しいのき迎賓館)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Rigidity of the directional moduli on pseudoconvex domains fibered by open Riemann surfaces2019

    • Author(s)
      濱野佐知子
    • Organizer
      東京大学・複素解析幾何セミナー (東京大学大学院数理科学研究科)
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Rigidity of the directional moduli on pseudoconvex domains fibered by open Riemann surfaces2019

    • Author(s)
      Sachiko Hamano
    • Organizer
      Riemann surfaces and Teichmuller theory (Euler International Mathmatical Institute, St. Petersburg, ロシア)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Pseudoconvex domains fibered by open Riemann surfaces of the same topological type2019

    • Author(s)
      濱野佐知子
    • Organizer
      名城大学・ポテンシャル論セミナー (名城大学)
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 流体力学的微分の変分公式とその応用について2019

    • Author(s)
      濱野佐知子
    • Organizer
      大阪大学幾何セミナー(大阪大学大学院理学研究科)
    • Related Report
      2019 Research-status Report
    • Invited
  • [Remarks] researchmap

    • URL

      https://researchmap.jp/hamano_sachiko

    • Related Report
      2023 Annual Research Report 2022 Research-status Report 2021 Research-status Report
  • [Remarks] 2022 CIMPA Schools (Varanasi) scientific committee

    • URL

      https://www.cimpa.info/en/node/7081

    • Related Report
      2022 Research-status Report
  • [Remarks] 大阪市立大学研究者総覧

    • URL

      https://research-soran17.osaka-cu.ac.jp/html/100000808_ja.html

    • Related Report
      2021 Research-status Report 2020 Research-status Report 2019 Research-status Report
  • [Remarks] OCAMI共同利用・共同研究:Riemann surfaces and related topics

    • URL

      https://sites.google.com/view/riemann-klein2021-ocami/home

    • Related Report
      2021 Research-status Report
  • [Funded Workshop] Riemann surfaces and related topics2022

    • Related Report
      2021 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi