• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Degeneration scheme and explicit formula for Koornwinder polynomials

Research Project

Project/Area Number 19K03530
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionHiroshima Institute of Technology

Principal Investigator

Hoshino Ayumu  広島工業大学, 工学部, 准教授 (30598280)

Co-Investigator(Kenkyū-buntansha) 白石 潤一  東京大学, 大学院数理科学研究科, 准教授 (20272536)
Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
KeywordsMacdonald多項式 / Koornwinder多項式 / Pieri公式 / 漸近自由解 / 明示公式 / C型Macdonald多項式 / 漸近自由固有関数 / 分規則 / 退化隣接関係と安定性
Outline of Research at the Start

本研究では,Koornwinder多項式の退化隣接関係と安定性の解析・明示公式の構成を実施する.我々は先行研究において,1列型分割に対するBC_n型Koornwinder多項式の明示公式を構成し,Koornwinder多項式が持つパラメタを1つづつ退化させ得られる多項式列間の基底の変換行列が,退化隣接関係と安定性という2つの良い性質を持つことを示した.本研究では,一般の分割λに対すBC_n型Koornwinder多項式について,退化隣接関係と安定性の解析や,明示公式の構成を相補的に行う.

Outline of Final Research Achievements

We obtained a Pieri type formula which is an expansion by the Mocdonald polynomials with hook diagrams for the multiplication of the polynomials with one row and one columun diagrams of type C. This Pieri type formula is analytic version of usual Pieri formula, which was firstly constructed by Lassalle and Schlosser for the Macdonald polynomials of type A. Moreover, we conjectured a similar analytic Pieri type formula for the type C degenerations of the Koornwinder polynomials.
On the other hand, we gave an explicit formula for the asymptotically free eigenfunctions of the q-Toda operator of type B, which was conjectured by our previous research.

Academic Significance and Societal Importance of the Research Achievements

解析的Pieri公式は、A型を除くとC型の一部でのみ構成されている。本研究ではC型Macdonald多項式について一行型と一列型の積を鈎型の多項式で展開する解析的Pieri型公式やC型的退化Koornwinder多項式の場合の予想式を得たが、これより、一般のウェイトやパラメタに付随するMacdonald-Koornwinder多項式の解析的Pieri公式の構成が期待される。漸近自由解においてはA型以外の完全な結果はなく、本研究で得たパラメタを特殊化したB型漸近自由解の結果から、パラメタを特殊化しない場合や他の型の漸近自由解の構成が期待される。これらから、本研究成果の学術的意義はあると考える。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (9 results)

All 2022 2021 2020 2019

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (6 results) (of which Invited: 1 results)

  • [Journal Article] Branching formula for q-Toda functions of type B.2021

    • Author(s)
      Hoshino, A., Ohkubo, Y. & Shiraishi, J.
    • Journal Title

      Lett Math Phys 111, 126 (2021).

      Volume: 111 Issue: 5 Pages: 126-126

    • DOI

      10.1007/s11005-021-01461-7

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Branching Rules for Koornwinder Polynomials with One Column Diagrams and Matrix Inversions2020

    • Author(s)
      星野歩、白石潤一
    • Journal Title

      Symmetry, Integrability and Geometry: Methods and Applications(SIGMA)

      Volume: 16 Pages: 84-111

    • NAID

      40022336950

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Polyhedral realizations of crystal bases B(λ) for quantum algebras of nonexceptional affine types2019

    • Author(s)
      星野歩、仲田研登
    • Journal Title

      Journal of Mathematical Physics

      Volume: 60 Issue: 9 Pages: 091704-091760

    • DOI

      10.1063/1.5043554

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] 鈎型C型Macdonald多項式の明示公式とPieri型公式2022

    • Author(s)
      星野歩
    • Organizer
      日本数学会秋季総合分科会無限可積分系セッション特別講演
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 変形Koornwinder作用素とC型Macdonald多項式I2021

    • Author(s)
      星野歩、大久保勇輔、白石潤一
    • Organizer
      日本数学会年会
    • Related Report
      2021 Research-status Report
  • [Presentation] 変形Koornwinder作用素とC型Macdonald多項式II2021

    • Author(s)
      星野歩、大久保勇輔、白石潤一
    • Organizer
      日本数学会年会
    • Related Report
      2021 Research-status Report
  • [Presentation] Pieri formula for Macdonald polynomials of type C with hook type diagrams2021

    • Author(s)
      星野歩
    • Organizer
      第36回リー代数サマーセミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] Brunching Rules for Koornwinder polynomials with One Column Diagrams and Matrix Inversions2019

    • Author(s)
      星野歩
    • Organizer
      RIMS共同研究(公開型)『表現論とその組合せ論的側面』
    • Related Report
      2019 Research-status Report
  • [Presentation] Conjecture concerning Bn q-Toda eigenfunctions2019

    • Author(s)
      星野歩,白石潤一
    • Organizer
      日本数学会2019年度秋季総合分科会
    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi