• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on mu-conformal perturbations toward the solution to the Goldberg-Milnor conjecture

Research Project

Project/Area Number 19K03535
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionHitotsubashi University (2021-2023)
Tokyo Institute of Technology (2019-2020)

Principal Investigator

KAWAHIRA Tomoki  一橋大学, 大学院経済学研究科, 教授 (50377975)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords複素力学系 / 放物的分岐 / 擬等角写像 / Beltrami方程式 / μ-等角写像 / ベルトラミ方程式 / 構造安定性 / 退化Beltrami方程式 / トライコーン / 反正則写像 / 退化ベルトラミ方程式 / 正則力学系 / マンデルブロー集合 / 反正則力学系 / Zalcmanの補題 / Julia集合
Outline of Research at the Start

本研究が対象とする複素力学系とは,Riemann 球面上で有理関数を無限に反復合成して得られる力学系をさす.1990年代,Goldberg と Milnor は複素係数多項式が生成する力学系において放物的周期点(複数の周期点が退化したもの)をもつとき,多項式の係数をうまく摂動することで,力学系のカオス部分を位相的に保ちつつ,退化していた放物的周期点を安定した吸引的な周期点と反発的な周期点のペアに変形できるであろうと予想した.本研究では,複素力学系理論における「擬等角摂動」の方法を発展させた μ-等角摂動により,Goldberg と Milnor の予想の肯定的解決を目指すものである.

Outline of Final Research Achievements

We investigate "μ-conformal mappings" to solve a conjecture proposed by Goldberg and Milnor. The conjecture states that for a given complex dynamic system with a parabolic periodic point (a periodic point with multiplicity), there exists a "mild" perturbation of the original dynamics. This perturbation transforms the parabolic periodic point into a pair of repelling and attracting periodic points without altering the topology of the Julia set.

Academic Significance and Societal Importance of the Research Achievements

一般に時間発展するシステムを「力学系」とよぶが,力学系を決定するパラメーターは多くの場合振動や摂動にさらされており,ある範囲で絶え間なく揺らぎ続けていると考えるのが自然である.一方で,そのような力学系の振る舞いが将来にわたって予測可能であるためには,力学系全体がパラメーターの変化に対して「安定」している必要がある.本研究では,パラメーターの変化に対して「不安定」なシステムにむしろ着目した.とくに,「不安定性」の要因となるものが「放物的分岐」とよばれる現象である場合に,パラメーターの変化を特定の方向に限定することで,システムの変化を最小限に抑えることができる,というタイプの成果を得た.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (29 results)

All 2024 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (7 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results) Presentation (12 results) (of which Int'l Joint Research: 11 results,  Invited: 10 results) Remarks (6 results) Funded Workshop (2 results)

  • [Int'l Joint Research] Uppsala University(スウェーデン)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Academia Sinica(その他の国・地域)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Uppsala University(スウェーデン)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Academia Sinica(その他の国・地域)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Academia Sinica(その他の国・地域)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] Academia Sinica(その他の国・地域(台湾))

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] 台湾中央研究院(その他の国・地域)

    • Related Report
      2019 Research-status Report
  • [Journal Article] From hyperbolic to parabolic parameters along internal rays2024

    • Author(s)
      Yi-Chiuan Chen and Tomoki Kawahira
    • Journal Title

      Trans. Amer. Math. Soc.

      Volume: 377

    • DOI

      10.1090/tran/9080

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Zalcman functions and similarity between the Mandelbrot set, Julia sets, and the tricorn2019

    • Author(s)
      Tomoki Kawahira
    • Journal Title

      Anal. Math. Phys

      Volume: 10 Issue: 2

    • DOI

      10.1007/s13324-020-00357-4

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Similarity between the Mandelbrot set and the Julia sets, and more2023

    • Author(s)
      Tomoki Kawahira
    • Organizer
      Around the Mandelbrot set: A conference celebrating the 60th birthday of Mitsuhiro Shishikura
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Derivatives of mildly degenerating holomorphic motions of the quadratic Julia sets2023

    • Author(s)
      Tomoki Kawahira
    • Organizer
      Workshop on Holomorphic Dynamics --- MLC and tools for studying it
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Visualization of quasiconformal deformations of holomorphic dynamics2023

    • Author(s)
      Tomoki Kawahira
    • Organizer
      Holomorphic Day
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Zalcman functions for holomorphic diffeomorphisms of C22023

    • Author(s)
      Tomoki Kawahira
    • Organizer
      Atelier franco-japonais de dynamiques reelles et complexes
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Visualization of quasiconformal deformations of holomorphic dynamics2022

    • Author(s)
      川平友規
    • Organizer
      RIMS 共同研究「複素力学系と関連分野」
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] J-stability in complex and non-Archimedean dynamics2022

    • Author(s)
      川平友規
    • Organizer
      2022 NCTS Japan-Taiwan Joint Workshop on Dynamical Systems
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 正則力学系の擬等角変形の可視化について2021

    • Author(s)
      川平友規
    • Organizer
      第64回函数論シンポジウム
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Derivatives of mildly degenerating holomorphic motions of the quadratic Julia sets2021

    • Author(s)
      川平友規
    • Organizer
      RIMS研究集会「複素力学系の諸相」
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Visualizing quasiconformal deformations of the dynamics: a worked out example2020

    • Author(s)
      Tomoki Kawahira
    • Organizer
      RIMS研究集会「複素力学系理論の総合的研究」
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] The Riemann Hypothesis and Holomorphic Index in Complex Dynamics2019

    • Author(s)
      Tomoki Kawahira
    • Organizer
      TMS meeting at Taichung
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] The Beltrami equations and its application to complex dynamics2019

    • Author(s)
      Tomoki Kawahira
    • Organizer
      The 6th Uppsala University -- Tokyo Tech Joint Symposium
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Derivatives of mildly degenerating holomorphic motions of the quadratic Julia sets2019

    • Author(s)
      Tomoki Kawahira
    • Organizer
      NCTS Workshop on Dynamical Systems
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] 個人ホームページ

    • URL

      https://www1.econ.hit-u.ac.jp/kawahira/

    • Related Report
      2023 Annual Research Report
  • [Remarks] 個人ホームページ

    • URL

      http://www1.econ.hit-u.ac.jp/kawahira

    • Related Report
      2022 Research-status Report
  • [Remarks] 個人ホームページ

    • URL

      http://www1.econ.hit-u.ac.jp/~kawahira

    • Related Report
      2021 Research-status Report
  • [Remarks] http://www.math.titech.ac.jp/~kawahira

    • Related Report
      2020 Research-status Report
  • [Remarks] https://www1.econ.hit-u.ac.jp/kawahira

    • Related Report
      2020 Research-status Report
  • [Remarks] 川平友規のウェブサイト

    • URL

      http://www.math.titech.ac.jp/~kawahira

    • Related Report
      2019 Research-status Report
  • [Funded Workshop] Around the Mandelbrot set: A conference celebrating the 60th birthday of Mitsuhiro Shishikura2023

    • Related Report
      2023 Annual Research Report
  • [Funded Workshop] RIMS共同研究(公開型)「複素力学系と関連分野」2022

    • Related Report
      2022 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi