• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research in quantitative aspects of multiple recurrence property of probability measure preserving transformations

Research Project

Project/Area Number 19K03558
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

Hirayama Michihiro  筑波大学, 数理物質系, 准教授 (50452735)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords多重再帰定理 / Khintchine型多重再帰定理 / Furstenberg独立性 / 極小自己結合 / Mobius直交性 / 多重再帰性 / 重み付きエルゴード定理 / 多重同時再帰性 / エルゴード理論的結合 / 同時再帰時間 / 対角測度
Outline of Research at the Start

エルゴード理論あるいは力学系理論において,もっとも基本的かつ重要な性質の一つに再帰性がある.例えば確率測度を保つ変換(保測変換)に対するPoincare再帰定理により,測度正の集合に属するほとんどすべての点は,保測変換の反復合成作用の下,その集合に無限回戻ることが知られている.この性質は,単一保測変換の場合から保測変換族に対する多重同時再帰性へと拡張して確立されている.本研究では,保測変換族に対する多重同時再帰性の定量的側面について,一般論の探求および具体例に対する評価を行う.

Outline of Final Research Achievements

Recurrence is considered as one of the most fundamental and important property in ergodic theory, and much research has been conducted from various perspectives. This property is extended from the case of a single transformation to multiple transformations. Regarding the quantitative aspects of multiple recurrence property, we conducted complementary research on the general theory and an investigation of specific examples. For families of probability measure-preserving transformations that are disjoint in the sense of Furstenberg, we established the mean convergence of multiple ergodic averages and the multiple recurrence result of the Khintchine type. We also showed that certain specific measure-preserving transformation has minimal self joining.

Academic Significance and Societal Importance of the Research Achievements

再帰性はエルゴード理論における基本的かつ重要な性質の一つであり,様々な観点から多くの研究がなされている.しかしながら,保測変換族に対する多重同時再帰性の定量的側面については,まだ明らかにされていないことが多い.この点について,本研究ではFurstenbergの意味で独立な保測変換族が呈する同時再帰時間のなす集合が,自然数全体において相対稠密であることを明らかにした(Khintchine型の多重再帰定理).変換族が可換な場合には先行する結果があったが,本研究成果は可換とは限らない変換族にも応用をもつ点で学術的意義があると思われる.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (20 results)

All 2024 2023 2022 2021 2019 Other

All Int'l Joint Research (11 results) Journal Article (5 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 5 results) Presentation (4 results) (of which Int'l Joint Research: 1 results,  Invited: 3 results)

  • [Int'l Joint Research] KTH Royal Institute of technology(スウェーデン)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Institute of Mathematics of NAS RA(アルメニア)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] POSTECH(韓国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] POSTECH/Dongguk University(韓国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Institute of Mathematics of NAS RA(アルメニア)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Dongguk University/POSTECH(韓国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] KTH Royal Institute of Technology(スウェーデン)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] University of Maryland(米国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Dongguk University/POSTECH(韓国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] University of Maryland(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Dongguk University(韓国)

    • Related Report
      2019 Research-status Report
  • [Journal Article] ON MÖBIUS DISJOINTNESS FOR INFINITE MEASURE-PRESERVING TRANSFORMATIONS2024

    • Author(s)
      Michihiro HIRAYAMA and Davit KARAGULYAN
    • Journal Title

      Kyushu Journal of Mathematics

      Volume: 78 Issue: 1 Pages: 259-289

    • DOI

      10.2206/kyushujm.78.259

    • ISSN
      1340-6116, 1883-2032
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On the coexistence of divergence and convergence phenomena for the Fourier-Haar series for non-negative functions2024

    • Author(s)
      Michihiro HIRAYAMA and Davit KARAGULYAN
    • Journal Title

      Analysis Mathematica

      Volume: - Issue: 1 Pages: 149-187

    • DOI

      10.1007/s10476-024-00010-3

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Differentiation properties of class L^{1}([0,1)^{2}) with respect to two different bases of rectangles2024

    • Author(s)
      Michihiro HIRAYAMA and Davit KARAGULYAN
    • Journal Title

      Acta Scientiarum Mathematicarum (Szeged)

      Volume: -

    • DOI

      10.1007/s44146-024-00127-9

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On the multiple recurrence properties for disjoint systems2022

    • Author(s)
      Michihiro Hirayama and Dong Han Kim and Younghwan Son
    • Journal Title

      Israel Journal of Mathematics

      Volume: 247 Issue: 1 Pages: 405-431

    • DOI

      10.1007/s11856-021-2271-5

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Bounds for multiple recurrence rate and dimension2019

    • Author(s)
      Michihiro Hirayama
    • Journal Title

      Tokyo Journal of Mathematics

      Volume: 42 Issue: 1

    • DOI

      10.3836/tjm/1502179281

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Kakutani's example revisted2023

    • Author(s)
      Michihiro HIRAYAMA
    • Organizer
      エルゴード理論研究集会
    • Related Report
      2023 Annual Research Report
  • [Presentation] L2 convergence of multiple ergodic averages for disjoint systems2021

    • Author(s)
      Michihiro HIRAYAMA
    • Organizer
      Recent Progress in Ergodic Theory
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] On Mobius disjointness for infinite measure preserving systems2019

    • Author(s)
      Michihiro Hirayama
    • Organizer
      Number Theory and Dynamics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A remark on disjointness for L^2-convergence of multiple ergodic averages2019

    • Author(s)
      Michihiro Hirayama
    • Organizer
      エルゴード理論とその周辺
    • Related Report
      2019 Research-status Report
    • Invited

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi