New Development of Geometric and Microlocal Analysis
Project/Area Number |
19K03569
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12020:Mathematical analysis-related
|
Research Institution | University of the Ryukyus |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | フーリエ積分作用素 / 超局所解析 / ラドン変換 / X線変換 / 波面集合 / 医用画像 / トモグラフィー / CTスキャナー / 医療画像 / 線質硬化 / 積分幾何学 / X-線変換 / 再生公式 / 解析的波面集合 / 幾何学的トモグラフィー / 測地的X線変換 / テンソルトモグラフィー |
Outline of Research at the Start |
本研究では、まずユークリッド空間におけるラドン変換の構造や性質について超局所解析の観点で見直し、ラドン変換をデータとする再生の可能性や一意性を考察する。特に不完全データの問題等の応用数学や実学とも関連する課題について波面集合を通じて考察する。研究が順調に進むようであれば、最先端分野であるテンソルトモグラフィーとよばれるある種のリーマン多様体上の測地的X線変換に関連した基礎研究に取り組む。
|
Outline of Final Research Achievements |
I studied microlocal analysis of integral geometry, and geometric tomography. Firstly I studied two-dimensional hyperbolic and paraboloc Radon transforms arising in seismology, and obtained the refinement of the inversion formula and the generalization for higher dimensions. These results already published in two papers. Secondly I introduced a Fourier integral operator with a complex phase function on the space of hyperplanes. This might be used for the microlocalization of the images of the Radon transform corresponding the measurements of CT scanners. Thirdly I studied the microlocal analysis of the d-plane transform on the Euclidean space. More precisely I described the canonical relation of the d-plane transform as a Fourier integral operator using my original coordinatization of the affine Grassmannians. Moreover, I studied the metal streaking artifacts using the canonical relation, and proved that for any two convex metal regions, the artifact is a conomal distribution.
|
Academic Significance and Societal Importance of the Research Achievements |
d平面変換の超局所解析の結果は従来の2次元に限られていたCTスキャナーに関連する超局所解析を現代の3次元CTスキャナーに関連する超局所解析の基盤を築くものであり、今後のさらなる様々な応用が期待される。一方、一般のアフィン・グラスマン多様体ではなく平面のなす空間に限定ではあるが、CTスキャナーで言うところの観測データに相当する超関数の超局所化の方法を構成したことになるが、超局所解析と深層学習を利用するCT関連の最先端の応用数学では観測データの超局所解析に踏み込めておらず、本研究はその意味で応用される可能性がある。
|
Report
(4 results)
Research Products
(7 results)