• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Sobolev's inequality on metric measure spaces

Research Project

Project/Area Number 19K03586
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionOita University

Principal Investigator

Ohno Takao  大分大学, 教育学部, 教授 (40508511)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
KeywordsSobolev型の不等式 / Morrey-Musielak-Orlicz空間 / 距離空間 / 極大作用素 / Herz空間 / Rieszポテンシャル / Sobolevの不等式 / Herz型Morrey空間 / Musielak-Orlicz空間
Outline of Research at the Start

本研究では,距離空間上のHerz型Morrey-Musielak-Orlicz空間におけるRieszポテンシャルに対するSobolev型の不等式について研究を行う.具体的には,距離空間上のHerz型Morrey-Musielak-Orlicz空間の性質や距離空間上のHerz型Morrey-Musielak-Orlicz空間における極大作用素の有界性について研究を行い,それを用いることで,距離空間上のHerz型Morrey-Musielak-Orlicz空間におけるRieszポテンシャルに対するSobolev型の不等式について研究を行う.

Outline of Final Research Achievements

In this work, we gave the boundedness of the Hardy-Littlewood maximal operator on central Herz-Morrey-Musielak-Orlicz spaces over bounded non-doubling metric measure spaces and established a generalization of Sobolev-type inequalities for Riesz potentials of functions in such spaces. Furthermore, we were concerned with Sobolev-type inequalities for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces of an integral form over bounded non-doubling metric measure spaces.

Academic Significance and Societal Importance of the Research Achievements

本研究対象である距離空間上でのHerz型Morrey-Musielak-Orlicz空間は,様々な関数空間などを包括した関数空間であるため,本研究で得られた成果は,様々なタイプの楕円型偏微分方程式の解の存在や,多様体上の微分幾何学,グラフ上の解析学などでの幅広い分野で応用されることが期待される.また本研究の成果は,宇宙開発への応用,ブレーキ,クラッチなどの応用デバイス開発,または,次世代フルードパワーシステムとして多くの分野で実用化・製品化への貢献が期待でき,社会貢献に大きなるものが期待される.

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (16 results)

All 2022 2021 2020 2019 Other

All Journal Article (12 results) (of which Peer Reviewed: 12 results,  Open Access: 1 results) Presentation (1 results) (of which Invited: 1 results) Remarks (3 results)

  • [Journal Article] Generalized fractional integral operators on variable exponent Morrey spaces of an integral form2022

    • Author(s)
      Ohno Takao、Shimomura Tetsu
    • Journal Title

      Acta Mathematica Hungarica

      Volume: 167 Issue: 1 Pages: 201-214

    • DOI

      10.1007/s10474-022-01245-y

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On Sobolev-type Inequalities on Morrey Spaces of an Integral Form2022

    • Author(s)
      Ohno Takao、Shimomura Tetsu
    • Journal Title

      Taiwanese Journal of Mathematics

      Volume: 26 Issue: 4 Pages: 831-845

    • DOI

      10.11650/tjm/220203

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Generalized fractional integral operators on variable exponent Morrey type spaces over metric measure spaces2022

    • Author(s)
      Ohno Takao、Shimomura Tetsu
    • Journal Title

      Portugaliae Mathematica

      Volume: 79 Issue: 3 Pages: 265-282

    • DOI

      10.4171/pm/2092

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Sobolev-Type Inequalities on Musielak-Orlicz-Morrey Spaces of an Integral Form2022

    • Author(s)
      Ohno Takao、Shimomura Tetsu
    • Journal Title

      Bulletin of the Malaysian Mathematical Sciences Society

      Volume: 46 Issue: 1

    • DOI

      10.1007/s40840-022-01424-8

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Riesz potentials and Sobolev-type inequalities in Orlicz-Morrey spaces of an integral form2022

    • Author(s)
      Ohno Takao、Shimomura Tetsu
    • Journal Title

      Czechoslovak Mathematical Journal

      Volume: 73 Issue: 1 Pages: 263-276

    • DOI

      10.21136/cmj.2022.0149-22

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Weak estimates for the maximal and Riesz potential operators in central Herz-Morrey spaces on the unit ball2021

    • Author(s)
      Yoshihiro Mizuta, Takao Ohno and Tetsu Shimomura
    • Journal Title

      Z. Anal. Anwend.

      Volume: 40 Pages: 183-207

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Herz-Morrey spaces on the unit ball with variable exponent approaching 1 and double phase functionals2021

    • Author(s)
      Yoshihiro Mizuta, Takao Ohno and Tetsu Shimomura
    • Journal Title

      Nagoya Math. J.

      Volume: 242 Pages: 1-34

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Boundedness of maximal operator, Hardy operator and Sobolev's inequalities on non-homogeneous central Herz-Morrey-Musielak-Orlicz spaces2021

    • Author(s)
      Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno and Tetsu Shimomura
    • Journal Title

      Hiroshima Math. J.

      Volume: 51 Issue: 1 Pages: 13-55

    • DOI

      10.32917/h2019141

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Sobolev's inequality for Musielak-Orlicz-Morrey spaces over metric measure spaces2021

    • Author(s)
      Takao Ohno and Tetsu Shimomura
    • Journal Title

      J. Aust. Math. Soc.

      Volume: 110 Pages: 371-385

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Sobolev's theorem for double phase functionals2020

    • Author(s)
      Y. Mizuta, T. Ohno and T. Shimomura,
    • Journal Title

      Math. Ineq. Appl.

      Volume: 23 Issue: 1 Pages: 17-33

    • DOI

      10.7153/mia-2020-23-02

    • Related Report
      2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Sobolev’s Inequality for Riesz Potentials of Functions in Musielak-Orlicz-Morrey Spaces Over Non-doubling Metric Measure Spaces2020

    • Author(s)
      Ohno Takao、Shimomura Tetsu
    • Journal Title

      Canadian Mathematical Bulletin

      Volume: 63 Issue: 2 Pages: 287-303

    • DOI

      10.4153/s0008439519000286

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Boundedness of the maximal and potential operators in Herz-Morrey type spaces2020

    • Author(s)
      Mizuta Yoshihiro、Ohno Takao、Shimomura Tetsu
    • Journal Title

      Complex Variables and Elliptic Equations

      Volume: 65 Issue: 9 Pages: 1575-1589

    • DOI

      10.1080/17476933.2019.1669571

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] Boundedness of the maximal operator for double phase functionals with variable exponents2019

    • Author(s)
      大野貴雄
    • Organizer
      第62回函数論シンポジウム
    • Related Report
      2019 Research-status Report
    • Invited
  • [Remarks] 大分大学教育研究所

    • URL

      http://www.ed.oita-u.ac.jp/kykenkyu/

    • Related Report
      2022 Annual Research Report 2021 Research-status Report
  • [Remarks] 大分大学教育福祉科学部教育研究所

    • URL

      http://www.ed.oita-u.ac.jp/kykenkyu/

    • Related Report
      2020 Research-status Report
  • [Remarks] 大分大学教育学部教育研究所

    • URL

      http://www.ed.oita-u.ac.jp/kykenkyu/index.html

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi