• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Asymptotic behavior of solutions to hyperbolic and dispersive equations with damping terms

Research Project

Project/Area Number 19K03596
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionFukuoka Institute of Technology

Principal Investigator

Takeda Hiroshi  福岡工業大学, 工学部, 教授 (10589237)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords消散型波動方程式 / 漸近形 / 時間減衰評価 / 平滑化 / 平滑化評価式 / 漸近挙動 / 強消散項 / 平滑化効果 / 非線形弾性波 / 消散項 / 漸近展開 / 弾性波 / 大域挙動 / 高次漸近展開 / 解の拡散現象
Outline of Research at the Start

消散項を持つ種々の双曲型・分散型方程式に対し, 調和解析学的手法によって解の時間大域的な挙動を同定する方法論の確立を目指す. 特に, 解の拡散現象の精密化となる高次漸近展開と, 分散性を用いた解の平滑化効果を併せて用いることで, 似ているとされる方程式間の解同士がどのように異なっているのかを定量的に明らかにする.また, この方法論の流体力学の基礎方程式や塑性力学の諸法則への応用も考えたい.

Outline of Final Research Achievements

For initial value problems of hyperbolic and dispersive equations with a damping term in the linear principal part, the asymptotic behaviors of the solutions, especially the time-decay estimates and the identification of the asymptotic profile, are obtained. The high frequency parts of the linear solution are estimated according to the difference in the damping terms, and a smoothing effect is derived. Based on the fact, together with the estimates which suggest the dissipation of the linear solutions, asymptotic behavior of time-global solutions to small initial values of nonlinear problems are described sharply.

Academic Significance and Societal Importance of the Research Achievements

消散項を含む双曲型・分散型方程式の初期値問題の対応する放物型方程式や、消散項を外した方程式には解の漸近挙動に対する精密な理論がよく知られている。本研究課題はその応用として得られる帰結ではなく、線形主要部のすべての項を用いた方程式固有の性質を見直して消散項を含む双曲型・分散型方程式に特化した理論体系を構築することを目指している。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (27 results)

All 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (2 results) Journal Article (9 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 9 results) Presentation (15 results) (of which Int'l Joint Research: 3 results,  Invited: 12 results) Remarks (1 results)

  • [Int'l Joint Research] Guangzhou University(中国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] 広州大学(中国)

    • Related Report
      2022 Research-status Report
  • [Journal Article] Large-Time Asymptotic Behaviors for Linear Blackstock’s Model of Thermoviscous Flow2023

    • Author(s)
      Chen Wenhui、Takeda Hiroshi
    • Journal Title

      Applied Mathematics & Optimization

      Volume: 88 Issue: 1

    • DOI

      10.1007/s00245-023-10003-7

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Asymptotic behaviors for the Jordan-Moore-Gibson-Thompson equation in the viscous case2023

    • Author(s)
      Chen Wenhui、Takeda Hiroshi
    • Journal Title

      Nonlinear Analysis

      Volume: 234 Pages: 113316-113316

    • DOI

      10.1016/j.na.2023.113316

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Large-time asymptotic behavior for the classical thermoelastic system2023

    • Author(s)
      Chen Wenhui、Takeda Hiroshi
    • Journal Title

      Journal of Differential Equations

      Volume: 377 Pages: 809-848

    • DOI

      10.1016/j.jde.2023.10.014

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Decay estimates of solutions to nonlinear elastic wave equations with viscoelastic terms in the framework of L^p-Sobolev spaces2023

    • Author(s)
      Kagei Yoshiyuki、Takeda Hiroshi
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 519 Issue: 1 Pages: 126801-126801

    • DOI

      10.1016/j.jmaa.2022.126801

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Large time behavior of solutions to elastic wave with structural damping2022

    • Author(s)
      Takeda Hiroshi
    • Journal Title

      Journal of Differential Equations

      Volume: 326 Pages: 227-253

    • DOI

      10.1016/j.jde.2022.04.017

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Smoothing effect and large time behavior of solutions to nonlinear elastic wave equations with viscoelastic term2022

    • Author(s)
      Kagei Yoshiyuki、Takeda Hiroshi
    • Journal Title

      Nonlinear Analysis

      Volume: 219 Pages: 112826-112826

    • DOI

      10.1016/j.na.2022.112826

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Global existence results for semi-linear structurally damped wave equations with nonlinear convection2021

    • Author(s)
      Dao Tuan Anh、Takeda Hiroshi
    • Journal Title

      Journal of Hyperbolic Differential Equations

      Volume: 18 Issue: 03 Pages: 729-760

    • DOI

      10.1142/s0219891621500223

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Asymptotic behaviors of global solutions for a semilinear diffusion equation in the de Sitter spacetime2020

    • Author(s)
      Nakamura Makoto; Takeda, Hiroshi
    • Journal Title

      Asymptotic Analysis

      Volume: - Issue: 3-4 Pages: 203-245

    • DOI

      10.3233/asy-201652

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Critical exponent for semi-linear wave equations with double damping terms in exterior domains2019

    • Author(s)
      D’Abbicco Marcello、Ikehata Ryo、Takeda Hiroshi
    • Journal Title

      Nonlinear Differential Equations and Applications NoDEA

      Volume: 26 Issue: 6 Pages: 25-25

    • DOI

      10.1007/s00030-019-0603-5

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Stability of periodic solutions of nonlinear elastic wave equations with viscoelastic terms2023

    • Author(s)
      竹田 寛志
    • Organizer
      研究集会「微分方程式の総合的研究」
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 強消散項を持つ準線形弾性波方程式に対する時間周期解の安定性について2023

    • Author(s)
      竹田 寛志
    • Organizer
      応用解析研究会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 準線形消散型弾性波方程式に対する時間周期解の安定性について2023

    • Author(s)
      隠居 良行, 竹田 寛志
    • Organizer
      2023年度秋季総合分科会関数方程式論分科会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Asymptotic profiles of solutions for the elastic wave with structural damping2023

    • Author(s)
      竹田 寛志
    • Organizer
      北里解析セミナー2023
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 構造的消散項を持つ弾性波の時間減衰評価について2023

    • Author(s)
      竹田寛志
    • Organizer
      Takamatsu Workshop on Partial Differential Equations
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 準線形消散型弾性波方程式の時間大域解の平滑化について2022

    • Author(s)
      竹田寛志
    • Organizer
      第11回「解析学とその周辺」@野田
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] L^pにおける準線形消散型弾性波方程式の解の時間減衰評価について2022

    • Author(s)
      竹田寛志
    • Organizer
      東京理科大学 理工学部数学科 談話会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Smoothing effect and large time behavior of solutions to quasi-linear elastic wave equations with viscoelastic term2021

    • Author(s)
      Hiroshi Takeda
    • Organizer
      Recent Advances in Nonlinear Evolution Equations (RANEE) Webinars (online)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Asymptotic expansion of solutions to elastic wave with structural damping2021

    • Author(s)
      Hiroshi Takeda
    • Organizer
      The 13th ISAAC Congress (Online)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 構造的消散項を持つ弾性波の漸近挙動について2021

    • Author(s)
      竹田 寛志
    • Organizer
      RIMS共同研究グループ型A「線形および非線形分散型方程式の研究の進展」
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 準線形消散型弾性波方程式に対する初期値問題の時間大域解の挙動 について2021

    • Author(s)
      竹田寛志
    • Organizer
      第38回九州における偏微分方程式研究集会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] 準線形弾性波の初期値問題に対する時間大域解の大域挙動について2020

    • Author(s)
      隠居 良行, 竹田 寛志
    • Organizer
      日本数学会2020年度年会関数方程式論分科会
    • Related Report
      2019 Research-status Report
  • [Presentation] Asymptotic profiles of solutions to semi-linear wave equations with structural damping2019

    • Author(s)
      Takeda Hiroshi
    • Organizer
      Workshop ``General Relativity and Partial Differential Equation’’
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Remarks on lower bounds for the elastic wave with structural damping2019

    • Author(s)
      竹田 寛志
    • Organizer
      長崎微分方程式セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Asymptotic profiles of global solutions for the semilinear diffusion equation in the de Sitter spacetime2019

    • Author(s)
      中村 誠, 竹田 寛志
    • Organizer
      日本数学会2019年度秋季総合分科会関数方程式論分科会
    • Related Report
      2019 Research-status Report
  • [Remarks] 福岡工業大学 研究者情報

    • URL

      https://www.fit.ac.jp/research/search/profile/id/164

    • Related Report
      2022 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi