Project/Area Number |
19K03617
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12040:Applied mathematics and statistics-related
|
Research Institution | Okayama University of Science (2020-2023) Niigata University (2019) |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 逆問題 / 散乱理論 / 非線形波動 / ハートリー・フォック近似 / 非線形シュレーディンガー方程式 / 多粒子系 / シュレーディンガー方程式 |
Outline of Research at the Start |
逆問題とは,直接観測できない原因を観測された現象(結果)から推定する問題である。医学,物理学における逆問題は,例えば物体の内部画像を構成する問題(CTやMRI)や散乱粒子から原子・分子の配列構造に依存するポテンシャルを決定する問題がある。これらの問題は偏微分方程式を用いて定式化することができ,求めようとしている未知の物理的特性は方程式の係数などに表れる。一方で,現実の物理現象の多くは非線形であり,そのモデル方程式は必然的に非線形偏微分方程式となる。本研究では,非線形偏微分方程式の未知係数などを境界や無限遠における解の挙動から決定する(再構成する)ことを研究する。
|
Outline of Final Research Achievements |
Important progress was made in the mathematical study of inverse scattering problems in quantum mechanics and inverse problems for the identification of nonlinearities. In the final year, new methods were developed to apply the Hartree and high-energy Born approximation methods to the two-dimensional case in space, and throughout the entire research period, new analytical methods were established for the nonlinear wave equation and the nonlinear Schroedinger equation. These results are expected not only to contribute to the elucidation of piezoelectric application techniques and atomic structure, but also to have a significant impact on the future development of mathematical research.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の成果は、圧電体の利用技術の進展や原子構造の解明に寄与する可能性があります。例えば、ライターやコンロ、ソナーやスピーカーなどの技術における圧電体の応用に役立つだけでなく、原子構造の解明においても新たな知見を提供することが期待されます。特に、ハートリー・ホック近似法と高エネルギーボルン近似法を組み合わせた新しい考え方は、従来の手法では困難だった問題の解決に寄与し、量子力学における逆散乱問題の理解を深める重要なステップとなりました。今後は、より多様な数理モデルに対してこれらの手法を検証し、応用範囲を広げる予定です。
|