• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On relaxation problems for quasiconvex optimization in terms of duality theory

Research Project

Project/Area Number 19K03620
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionShimane University

Principal Investigator

Suzuki Satoshi  島根大学, 学術研究院理工学系, 准教授 (70580489)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords最適化問題 / 準凸最適化問題 / 応用数学 / 凸解析
Outline of Research at the Start

準凸最適化問題は経済学等の問題を最も適切に数理モデル化できる手法の一つである。緩和は問題を解きやすい形に帰着して解決する手法であるが、準凸最適化においては未解決課題が多く残されている。
本研究では緩和問題に関する研究の一つとして、準凸最適化問題に対する双対理論を用いた緩和問題とその同値性について研究を行う。応募者独自の手法である生成集合と準凸最適化における双対理論を用いて緩和問題を導出し、主問題と同値となるための条件を明らかにする。

Outline of Final Research Achievements

Quasiconvex optimization problem is one of the most suitable mathematical models for real problems such as economics. Relaxation is a technique that solves problems by reducing them to an easy-to-solve form, but there are unsolved problems in quasiconvex optimization. The purpose of this research is to propose a relaxation problem using duality theory for quasiconvex optimization problems and study necessary conditions for its equivalence.
We study optimality conditions and constraint qualifications, duality theorems for set functions, characterizations of constraint qualifications, KKT optimality conditions for quasiconvex optimization, linear relaxations for quasiconvex optimization, optimality conditions in terms of subdifferentials, and dual problems in terms of conjugate functions.

Academic Significance and Societal Importance of the Research Achievements

研究期間全体を通じて、準凸最適化問題に対する緩和問題及び最適性条件に関する研究を行った。これらは問題を制約のない問題や不動点問題などの解きやすい形に帰着して解決するための手法であり、種々のアルゴリズムを用いた問題解決を可能とするためのものである。特に準凸最適化問題の線形計画緩和は、準凸最適化問題を線形計画問題に帰着するものであり、単体法や内点法などのアルゴリズムを用いた問題解決が可能になる。また、本研究は解きやすい準凸最適化問題の特徴はどのようなものか、といった問いに答えるものともなっている。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (26 results)

All 2022 2021 2020 2019 Other

All Int'l Joint Research (2 results) Journal Article (11 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 9 results,  Open Access: 11 results) Presentation (3 results) Remarks (10 results)

  • [Int'l Joint Research] Babes-Bolyai University(ルーマニア)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] 釜慶大学校(韓国)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Conjugate dual problem for quasiconvex programming2022

    • Author(s)
      Satoshi Suzuki
    • Journal Title

      J. Nonlinear Convex Anal.

      Volume: 23 Pages: 879-889

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] ε-subdifferentials and optimality conditions for quasiconvex programming2021

    • Author(s)
      Satoshi Suzuki
    • Journal Title

      Linear and Nonlinear Analysis

      Volume: 7 Pages: 185-197

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Linear Programming Relaxation for Quasiconvex Programming2021

    • Author(s)
      Satoshi Suzuki
    • Journal Title

      Journal of Nonlinear and Convex Analysis

      Volume: 22 Pages: 1251-1261

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 準凸計画問題に対するKKT条件と制約想定2021

    • Author(s)
      Satoshi Suzuki
    • Journal Title

      数理解析研究所講究録

      Volume: 2190 Pages: 88-94

    • Related Report
      2021 Research-status Report
    • Open Access
  • [Journal Article] Karush-Kuhn-Tucker type optimality condition for quasiconvex programming in terms of Greenberg-Pierskalla subdifferential2020

    • Author(s)
      Suzuki Satoshi
    • Journal Title

      Journal of Global Optimization

      Volume: 79 Issue: 1 Pages: 191-202

    • DOI

      10.1007/s10898-020-00926-8

    • NAID

      120007188793

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Characterizations of the basic constraint qualification and its applications2020

    • Author(s)
      Daishi Kuroiwa, Satoshi Suzuki and Shunsuke Yamamoto
    • Journal Title

      Journal of Nonlinear Analysis and Optimization

      Volume: 11 Pages: 99-109

    • NAID

      120007000510

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Duality theorems for convex and quasiconvex set functions2020

    • Author(s)
      Satoshi Suzuki and Daishi Kuroiwa
    • Journal Title

      SN Operations Research Forum

      Volume: 1 Issue: 1 Pages: 1-13

    • DOI

      10.1007/s43069-020-0005-x

    • NAID

      120006979679

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Optimality Conditions and Constraint Qualifications for Quasiconvex Programming2019

    • Author(s)
      Satoshi Suzuki
    • Journal Title

      J. Optim. Theory Appl.

      Volume: 183 Issue: 3 Pages: 963-976

    • DOI

      10.1007/s10957-019-01534-7

    • NAID

      120006949276

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Surrogate duality for optimization problems involving set functions2019

    • Author(s)
      Daishi Kuroiwa, Gue Myung Lee, and Satoshi Suzuki
    • Journal Title

      Linear Nonlinear Anal.

      Volume: 5 Pages: 269-277

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Optimality conditions for quasiconvex programming with a reverse quasiconvex constraint2019

    • Author(s)
      Satoshi Suzuki
    • Journal Title

      Proceedings of the 10th Anniversary Conference on Nonlinear Analysis and Convex Analysis

      Volume: 1 Pages: 303-310

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 準凸計画問題に対する劣微分を用いた最適性条件2019

    • Author(s)
      Satoshi Suzuki and Daishi Kuroiwa
    • Journal Title

      数理解析研究所講究録

      Volume: 2112 Pages: 154-159

    • Related Report
      2019 Research-status Report
    • Open Access
  • [Presentation] 準凸計画問題に対するKKT最適性条件2021

    • Author(s)
      Satoshi Suzuki
    • Organizer
      日本数学会2021年度秋季総合分科会
    • Related Report
      2021 Research-status Report
  • [Presentation] 準凸計画問題に対する最適性条件と制約想定2021

    • Author(s)
      鈴木 聡
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report
  • [Presentation] Optimality conditions and constraint qualifications for quasiconvex programming2019

    • Author(s)
      Satoshi Suzuki
    • Organizer
      非線形解析学と凸解析学の研究
    • Related Report
      2019 Research-status Report
  • [Remarks]

    • URL

      https://www.math.shimane-u.ac.jp/~suzuki

    • Related Report
      2022 Annual Research Report
  • [Remarks]

    • URL

      https://www.staffsearch.shimane-u.ac.jp/kenkyu/search/ddc356628b0a7d52fbc451b0de34860d/detail?page=research

    • Related Report
      2022 Annual Research Report
  • [Remarks]

    • URL

      https://ir.lib.shimane-u.ac.jp/en/list/shimane_creators/S/98cef94ee1b4c0482edd9ed34c3e9b56

    • Related Report
      2022 Annual Research Report
  • [Remarks]

    • URL

      https://www.math.shimane-u.ac.jp/~suzuki

    • Related Report
      2021 Research-status Report
  • [Remarks]

    • URL

      https://www.staffsearch.shimane-u.ac.jp/kenkyu/search/ddc356628b0a7d52fbc451b0de34860d/detail?page=research

    • Related Report
      2021 Research-status Report
  • [Remarks]

    • URL

      https://ir.lib.shimane-u.ac.jp/en/list/shimane_creators/S/98cef94ee1b4c0482edd9ed34c3e9b56

    • Related Report
      2021 Research-status Report
  • [Remarks]

    • URL

      https://www.math.shimane-u.ac.jp/~suzuki

    • Related Report
      2020 Research-status Report
  • [Remarks]

    • URL

      https://www.staffsearch.shimane-u.ac.jp/kenkyu/search/ddc356628b0a7d52fbc451b0de34860d/detail?page=research

    • Related Report
      2020 Research-status Report
  • [Remarks]

    • URL

      https://ir.lib.shimane-u.ac.jp/en/list/shimane_creators/S/98cef94ee1b4c0482edd9ed34c3e9b56

    • Related Report
      2020 Research-status Report
  • [Remarks]

    • URL

      http://www.math.shimane-u.ac.jp/~suzuki/publications.html

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi