• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of a new theory for the zero point problem of maximal monotone operators

Research Project

Project/Area Number 19K03632
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionYokohama National University

Principal Investigator

Ibaraki Takanori  横浜国立大学, 教育学部, 教授 (90345439)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords極大単調作用素 / リゾルベント作用素 / 零点問題 / 近接点法 / 非拡大型非線形写像 / 不動点近似法 / ヒルベルト空間 / バナッハ空間 / リゾルベント
Outline of Research at the Start

極大単調作用素の零点を求める問題は、凸最適化問題、均衡問題等の多くの非線形問題を一般化した問題である。この問題の解への近似理論の代表的な手法に近接点法があるが、極大単調作用素の逆像から生成されるリゾルベント作用素とよばれる写像を用いて逐次的に点列を構成する。一般に写像の「逆像」の値を求めるのは容易でなく、部分問題として長年の課題であった。本研究ではこの部分問題を解決するような新しい近似理論の構築を目指す。

Outline of Final Research Achievements

In this research, we study an algorithm for finding the value of the resolvent operator used in the proximal point algorithm to the solution of the zero point problem for maximal monotone operators. We also study a fixed point algorithm of nonlinear mappings of nonexpansive type satisfied by the resolvent operator. We first obtained some fixed point algorithms for nonlinear mappings of nonexpansive type in Hilbert space and a Banach space. Next, we proposed algorithms for finding the value resolvents of type (Q) and (R) in a Banach space. We also proposed a new algorithm for the zero point problem for maximal monotone operators.

Academic Significance and Societal Importance of the Research Achievements

極大単調作用素の零点問題は工学,物理学や経済学等のさまさまな分野に応用される.近接点法は零点問題の解への代表的な近似法であるが,点列構成に用いられるリゾルベント作用素の値を求めることは一般的に容易ではない.先行研究はいくつかあるがそれぞれ課題がある.本研究ではこれら課題を解決できた.さらに,一連の研究で新たな不動点近似法や近接点を提案も行い学術的意義は高いと考える.また,近接点法は現実的な問題に対する具体的なアプローチであるが,先行研究における数学的には正しいが現実的計算が困難であった問題点を解決したことは数学以外の関連分野での応用上に大きなメリットであり社会的意義は高いと考える.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (26 results)

All 2024 2023 2022 2021 2020 2019

All Journal Article (13 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 5 results,  Open Access: 10 results) Presentation (13 results) (of which Int'l Joint Research: 7 results,  Invited: 2 results)

  • [Journal Article] 零点問題における許容範囲を持つ縮小射影法とその応用2024

    • Author(s)
      茨木貴徳・梶葉駿介・中野龍治
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2274 Pages: 61-70

    • Related Report
      2023 Annual Research Report
    • Open Access
  • [Journal Article] 2つの可換な非線形写像の共通不動点への強収束定理2024

    • Author(s)
      茨木貴徳・梶葉駿介・竹内幸雄
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2274 Pages: 71-79

    • Related Report
      2023 Annual Research Report
    • Open Access
  • [Journal Article] Approximation of the value of the resolvent of a maximal monotone operator in a Banach space2024

    • Author(s)
      T. Ibaraki
    • Journal Title

      Journal of Convex Analysis

      Volume: 31 Pages: 131-138

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On shrinking projection method for cutter type mappings with nonsummable errors2023

    • Author(s)
      Ibaraki Takanori、Saejung Satit
    • Journal Title

      Journal of Inequalities and Applications

      Volume: 2023:92 Issue: 1 Pages: 1-20

    • DOI

      10.1186/s13660-023-03004-1

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] 2つの可換な非線形写像に関する共通不動点への弱収束定理2023

    • Author(s)
      茨木貴徳・梶葉駿介・竹内幸雄
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2240 Pages: 153-161

    • Related Report
      2022 Research-status Report
    • Open Access
  • [Journal Article] A weak convergence theorem for common fixed points of two nonlinear mappings in Hilbert spaces2022

    • Author(s)
      T. Ibaraki, S. Kajiba and Y. Takeuchi
    • Journal Title

      Abstract and Applied Analysis

      Volume: 2022 Pages: 1-9

    • DOI

      10.1155/2022/9568060

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 2つのλ-ハイブリッド写像に関する共通吸引点定理2022

    • Author(s)
      茨木貴徳
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2214 Pages: 153-161

    • Related Report
      2022 Research-status Report
    • Open Access
  • [Journal Article] ヒルベルト空間における非線形写像族の共通不動点へ収束定理2021

    • Author(s)
      茨木貴徳
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2190

    • Related Report
      2021 Research-status Report
    • Open Access
  • [Journal Article] λ-ハイブリッド写像の族に関する不動点定理2021

    • Author(s)
      茨木貴徳
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2194

    • Related Report
      2021 Research-status Report
    • Open Access
  • [Journal Article] Approximation of a common fixed point of two nonlinear mappings with nonsummable errors in a Banach space2020

    • Author(s)
      T. Ibaraki, S. Kajiba and Y. Kimura
    • Journal Title

      Differential Geometry, Algebra and Analysis, Springer Proceedings in Mathematics & Statistics

      Volume: 327 Pages: 185-196

    • DOI

      10.1007/978-981-15-5455-1_15

    • ISBN
      9789811554544, 9789811554551
    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] A mean convergence theorem finding a common attractive point of two nonlinear mappings2020

    • Author(s)
      T. Ibaraki and Y. Takeuchi
    • Journal Title

      Yokohama Mathematical Journal

      Volume: 66 Pages: 61-77

    • NAID

      120007145319

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] 零点問題に関する誤差付きの近似定理2019

    • Author(s)
      茨木貴徳
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2112 Pages: 20-26

    • Related Report
      2019 Research-status Report
    • Open Access
  • [Journal Article] 2つの非拡大型非線形写像に関する総和不可能誤差付の共通不動点近似2019

    • Author(s)
      茨木貴徳・梶葉駿介
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2114 Pages: 165-170

    • Related Report
      2019 Research-status Report
    • Open Access
  • [Presentation] A common attractive point theorem for two commutative nonlinear mappings2023

    • Author(s)
      T. Ibaraki
    • Organizer
      The 14th International Conference on Fixed Point Theory and its Applications
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Existence and convergence theorems for a family of $lambda$-hybrid mappings2023

    • Author(s)
      T. Ibaraki
    • Organizer
      The 11th Asian Conference on Fixed Point Theory and Optimization 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A weak convergence theorem for common fixed points of two nonlinear mappings in Hilbert spaces2023

    • Author(s)
      T. Ibaraki, S. Kajiba and Y. Takeuchi
    • Organizer
      The 11th Asian Conference on Fixed Point Theory and Optimization 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A shrinking projection method with allowable range for zero point problems in a Hilbert space2023

    • Author(s)
      T. Ibaraki, S. Kajiba and R. Nakano
    • Organizer
      The 11th Asian Conference on Fixed Point Theory and Optimization 2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] ヒルベルト空間における零点問題に関する許容範囲を持つ縮小射影法2023

    • Author(s)
      茨木貴徳・梶葉駿介・中野龍治
    • Organizer
      RIMS共同研究(公開型) "非線形解析学と凸解析学の研究"
    • Related Report
      2023 Annual Research Report
  • [Presentation] 2つの可換な非線形写像に関する共通不動点への強収束定理2023

    • Author(s)
      茨木貴徳・梶葉駿介・竹内幸雄
    • Organizer
      RIMS共同研究(公開型) "非線形解析学と凸解析学の研究"
    • Related Report
      2023 Annual Research Report
  • [Presentation] 2つの可換な非線形写像に関する共通不動点への弱収束定理2022

    • Author(s)
      茨木貴徳・梶葉駿介・竹内幸雄
    • Organizer
      RIMS共同研究(公開型) "非線形解析学と凸解析学の研究"
    • Related Report
      2022 Research-status Report
  • [Presentation] Fixed point theorems for a family of λ-hybrid mappings in a Hilbert space2021

    • Author(s)
      T. Ibaraki
    • Organizer
      The Third International Workshop on Nonlinear Analysis and Applications, Faculty of Science and Mathematics, University of Nis, Serbia
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 2つの非線形写像に関する共通吸引点への収束定理2021

    • Author(s)
      茨木貴徳
    • Organizer
      RIMS共同研究(公開型) "非線形解析学と凸解析学の研究"
    • Related Report
      2021 Research-status Report
  • [Presentation] λ-ハイブリッド写像族に関する存在定理および収束定理2021

    • Author(s)
      茨木貴徳
    • Organizer
      RIMS共同研究(公開型) "非線形解析学と凸解析学の研究"
    • Related Report
      2020 Research-status Report
  • [Presentation] Weak and Strong convergence theorems for common fixed points of a family of nonlinear mappings2019

    • Author(s)
      T.Ibaraki
    • Organizer
      The 13th International Conference on Fixed Point Theory and Its Applications, HeNan Normal University, HeNan, China
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] ヒルベルト空間における非線形写像族に関する弱および強収束定理2019

    • Author(s)
      茨木貴徳
    • Organizer
      RIMS共同研究(公開型) "非線形解析学と凸解析学の研究"
    • Related Report
      2019 Research-status Report
  • [Presentation] Weak and strong convergence theorems for common fixed points of nonlinear mappings in a Hilbert space2019

    • Author(s)
      T.Ibaraki
    • Organizer
      International Conference on Mathematical Analysis and Its Applications South Asian University, New Delhi, India
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi