• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometric Mechanics of Neural Networks

Research Project

Project/Area Number 19K03635
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionChubu University (2021-2022)
The Institute of Statistical Mathematics (2019-2020)

Principal Investigator

Goto Shin-itiro  中部大学, AI数理データサイエンスセンター, 准教授 (60749282)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords幾何学的力学系理論 / ニューラルネット / 微分幾何学 / 力学系理論 / 統計力学 / 最適化問題 / 接触幾何学 / シンプレクティック幾何学 / ニューラルネットワーク / マスター方程式 / 凸最適化理論 / 情報幾何学 / 離散幾何学 / ヘッセ幾何学
Outline of Research at the Start

人間の脳内の神経回路モデルはもとより、近年実社会でも特に需要が高まっている機械学習分野でも用いられているニューラルネットワークの単純化したモデル群を本研究で主に扱う。機械学習の中でも特に、ある種のニューラルネットワークモデルがなぜ効率的に学習できるかを解明するための一助となる理論を微分幾何学を用いて構築する。具体的には、ニューラルネットワークモデルでの活性化関数と呼ばれる非線形関数が凸関数と結びつく場合に対し、ヘッセ幾何学、情報幾何学や接触幾何学と呼ばれる微分幾何学を用いたモデル群の記述と、曲率やラプラシアン等の幾何学量が如何に学習理論や力学系と結びつくかを検討する。

Outline of Final Research Achievements

In this research project, dynamical systems and thermodynamic systems related to Neural networks have been studied. Although neural network models were scheduled to be focused in the original plan, more basic and fundamental models have been focused in this research project. Additionally, some thermodynamic systems have been studied. It is shown that various dynamical and thermodynamic models were shown to be described in the languages of contact, information, and discrete geometries. In addition, the properties of this description and applications were shown.

Academic Significance and Societal Importance of the Research Achievements

力学系理論や熱統計力学は理工学の様々な分野で応用され、汎用性の高い方法論を提供してきた。特にニューラルネットワークなどの脳を模したモデルの解析は、人工知能分野の近年の発展にも寄与した。更なる関連基礎数理の発達が期待されている。また一方、シンプレクティック幾何学などの幾何学分野は、力学系理論の発展と共に発展してきた。本研究では力学系理論や熱統計力学と、これまであまり結びつきが強くなかった接触幾何学、情報幾何学、離散幾何学、アファイン幾何学を結びつけ、ニューラルネットワークより更に基本となるモデル群に対して(熱)力学系の緩和時間の幾何学的記述やその限界を具体的に示した。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (26 results)

All 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (1 results) Journal Article (7 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 7 results,  Open Access: 3 results) Presentation (18 results) (of which Int'l Joint Research: 4 results,  Invited: 13 results)

  • [Int'l Joint Research] テルアビブ大学(イスラエル)

    • Related Report
      2022 Annual Research Report
  • [Journal Article] Affine geometric description of thermodynamics2023

    • Author(s)
      Goto Shin-itiro
    • Journal Title

      Journal of Mathematical Physics

      Volume: 64 Issue: 1 Pages: 013301-013301

    • DOI

      10.1063/5.0124768

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Contact geometric approach to Glauber dynamics near a cusp and its limitation2023

    • Author(s)
      Goto Shin-itiro、Lerer Shai、Polterovich Leonid
    • Journal Title

      Journal of Physics A: Mathematical and Theoretical

      Volume: 56 Issue: 12 Pages: 125001-125001

    • DOI

      10.1088/1751-8121/acbe81

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Nonequilibrium thermodynamic process with hysteresis and metastable states-A contact Hamiltonian with unstable and stable segments of a Legendre submanifold2022

    • Author(s)
      Goto Shin-itiro
    • Journal Title

      Journal of Mathematical Physics

      Volume: 63 Issue: 5 Pages: 053302-053302

    • DOI

      10.1063/5.0062495

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Contact Hamiltonian Systems for Probability Distribution Functions and Expectation Variables: A Study Based on a Class of Master Equations2021

    • Author(s)
      Goto Shin-itiro、Hino Hideitsu
    • Journal Title

      Progress in Information Geometry

      Volume: - Pages: 57-87

    • DOI

      10.1007/978-3-030-65459-7_4

    • ISBN
      9783030654580, 9783030654597
    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Diffusion equations from master equations:A discrete geometric approach2020

    • Author(s)
      Goto Shin-itiro、Hino Hideitsu
    • Journal Title

      Journal of Mathematical Physics

      Volume: 61 Issue: 11 Pages: 113301-113301

    • DOI

      10.1063/5.0003656

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Information and contact geometric description of expectation variables exactly derived from master equations2019

    • Author(s)
      Shin-itiro Goto and Hideitsu Hino
    • Journal Title

      Physica Scripta

      Volume: 95 Issue: 1 Pages: 015207-015207

    • DOI

      10.1088/1402-4896/ab4295

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Expectation Variables on a Para-Contact Metric Manifold Exactly Derived from Master Equations2019

    • Author(s)
      Shin-itiro Goto and Hideitsu Hino
    • Journal Title

      GSI 2019, Lecture Notes in Computer Science

      Volume: 11712 Pages: 239-247

    • DOI

      10.1007/978-3-030-26980-7_25

    • ISBN
      9783030269791, 9783030269807
    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Contact geometric approaches to thermodynamic processes with metastable equilibrium states2023

    • Author(s)
      S. Goto
    • Organizer
      Forschungszentrum Julich GmbH, Peter Grunberg Institute (PGI), Ansari's Research Group Seminar
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] ヒステリシス系の接触幾何学的記述:非平衡熱力学の幾何学化に向けて2022

    • Author(s)
      後藤振一郎
    • Organizer
      量子と古典の物理と幾何
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] ルジャンドル部分多様体を固定点集合とする接触ハミルトン力学系: 熱力学相転移・ヒステリシス系への応用2022

    • Author(s)
      後藤振一郎
    • Organizer
      2021年度冬の力学系研究集会
    • Related Report
      2021 Research-status Report
  • [Presentation] Symplectic integrator via contact geometry for Nesterov-type ODE2022

    • Author(s)
      日野英逸、後藤振一郎
    • Organizer
      Workshop on Functional Inference and Machine Intelligence
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 非自励ハミルトン系を用いた制約なし凸最適化問題の構造保存数値解法2021

    • Author(s)
      後藤振一郎、日野英逸
    • Organizer
      統計物理と統計科学のセミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] 接触多様体のシンプレクティック化を用いた制約なし凸最適化問題の構造保存数値解法2020

    • Author(s)
      後藤振一郎、日野英逸
    • Organizer
      Poisson幾何とその周辺2020
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] マスター方程式と離散拡散方程式の関係 --離散幾何学による解析--2020

    • Author(s)
      後藤振一郎
    • Organizer
      統計数理研究所オープンハウス ( オンライン開催 )
    • Related Report
      2020 Research-status Report
  • [Presentation] マスター方程式の離散幾何学 --拡散方程式の厳密な導出--2020

    • Author(s)
      後藤振一郎、日野英逸
    • Organizer
      RIMS共同研究「数理科学の諸問題と力学系理論の新展開」
    • Related Report
      2020 Research-status Report
  • [Presentation] Information and contact geometries for expectation variables exactly derived from a class of master equations2020

    • Author(s)
      S. Goto and H. Hino
    • Organizer
      Workshop on Emerging Themes in Computational Statistics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 応用接触幾何学2020

    • Author(s)
      後藤 振一郎
    • Organizer
      福岡大学応用数学科セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] マスター方程式の離散幾何学--拡散方程式の厳密な導出--2019

    • Author(s)
      後藤 振一郎 日野 英逸
    • Organizer
      第25回交通流と自己駆動粒子系のシンポジウム
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] マスター方程式の離散幾何学--拡散方程式の厳密な導出--2019

    • Author(s)
      後藤 振一郎 日野 英逸
    • Organizer
      第25回非線形局在モード勉強会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] マスター方程式から厳密に得られる期待値変数の情報幾何学, 接触幾何学およびその周辺2019

    • Author(s)
      後藤 振一郎 日野 英逸
    • Organizer
      科研費シンポジウム「統計学と機械学習の数理と展開」
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Expectation variables on a para-contact metric manifold exactly derived from master equations2019

    • Author(s)
      Shin-itiro Goto and Hideitsu Hino
    • Organizer
      Geometric Science of Information, 4th Edition
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Hessian-information geometric formulation of neural network models having a Lyapunov function2019

    • Author(s)
      Shin-itiro Goto
    • Organizer
      RIMS研究集会「力学系 -新たな理論と応用に向けて-」
    • Related Report
      2019 Research-status Report
  • [Presentation] Hessian-information geometric formulation of Hamiltonian systems and generalized Toda’s dual transform2019

    • Author(s)
      Shin-itiro Goto and Tatsuaki Wada
    • Organizer
      Geometry, Mechanics, and their Applications,「幾何学と力学とその応用」
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] マスター方程式と拡散方程式の関係--離散幾何学によるアプローチ--2019

    • Author(s)
      後藤 振一郎
    • Organizer
      中部大学 工学基礎教室 セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Contact geometric approaches to nonlinear RLC circuit models in contact with heat bath2019

    • Author(s)
      Shin-itiro Goto
    • Organizer
      Seminar at Laboratory of Automatic Control, Chemical and Pharmaceutical Engineering, Lyon 1, France
    • Related Report
      2019 Research-status Report
    • Invited

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi