ビジネス価値創造のためのデータ解析プラットフォームと時変協調フィルタリングの研究
Project/Area Number |
19K04914
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 25010:Social systems engineering-related
|
Research Institution | Waseda University |
Principal Investigator |
小林 学 早稲田大学, データ科学センター, 教授 (80308204)
|
Co-Investigator(Kenkyū-buntansha) |
平澤 茂一 早稲田大学, 理工学術院, 名誉教授 (30147946)
松嶋 敏泰 早稲田大学, 理工学術院, 教授 (30219430)
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Project Status |
Granted (Fiscal Year 2022)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | データ解析プラットフォーム / ビッグデータ / 潜在構造分析 / 協調フィルタリング / 機械学習 / データ解析 / 解析プラットフォーム |
Outline of Research at the Start |
企業の持つビッグデータを有効に活用して新たなビジネス価値創造を行うことは,日本において急務である.またこれを産学連携で行うには,個人情報やセキュリティに配慮した上でデータ解析を行うための効果的なプラットフォームと,その運用方法の確立が重要である.本研究ではデータを持ち出さずに解析を行うプラットフォームの構築を行い,その効果的な運用方法の設計を行う.さらにライフイベントなど時間で変化する状況における顧客の消費行動を数理モデル化し,企業データを活用することによりビジネス価値創造へつなげる手法の提案を行う.
|
Outline of Annual Research Achievements |
本研究では貴重な企業データを外部に出力することなく解析を行うプラットフォーム(DAPF)として,クラウドDAPF(CDAPF),並びにオンプレミスDAPF(ODAPF)の実運用を開始し,本プラットフォームにおいて4つのプロジェクトを実施しており,当初の目標を達成している. また顧客の消費行動に対するビジネス価値創造のための協調フィルタリングに関して,時系列構造を含む種々の異なる種類のデータを統合的に扱う必要性がますます高まってきている.具体的には協調フィルタリングにおいて商品に対する消費行動のみを単独で分析対象とするモデルが多い一方,通常顧客や商品には種々の属性情報が存在し,また消費行動には季節性などの時間属性も付帯する.そこで2022年度はこれらの属性情報や消費行動等を統合するための潜在構造分析のモデルの提案を行なった.より具体的には属性情報等の顧客や商品がそれぞれ潜在変数を持ち,これらの潜在変数とさらに消費行動として現れる潜在変数との関連を数理モデルとして表現した.このモデルの特徴は,データの生成観測メカニズムを規定しているため,顧客や商品の属性情報や消費行動などに多くの欠測が含まれている場合でも,総合的なサンプルサイズが大きい場合には問題なく潜在構造を推定可能な利点を持つ.これにより,顧客,商品と消費行動の関連がより深く把握でき,さらに予測精度の向上も見られることが分かった. さらに,2値分類器の組合せで多値分類を行う誤り訂正出力符号(ECOC)が提案されているが,この時に用いるECOCの符号語間のハミング距離が多値分類に与える影響を理論的に解析する方法を明らかにした.
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
データ解析プラットフォームについては,当初の目標を達成している.また昨年度からの課題であった消費行動に対する欠測の問題に対して,顧客や商品に対するさらなる潜在構造モデルの提案により,解決に至っている.また顧客や商品の情報と消費行動の関係を潜在構造として明らかにする観点は,ビジネス価値を見出す重要な要素であり,順調な進捗である.
|
Strategy for Future Research Activity |
潜在構造分析における消費行動は基本的には長いスパンで観測した事象(消費)のモデル化が多い.一方で同時購入など短い時間間隔での消費に対する潜在構造分析は不十分である.この観点に対する生成観測メカニズムとしての潜在構造を検討する.
|
Report
(4 results)
Research Products
(30 results)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[Book] データ科学入門II2023
Author(s)
松嶋 敏泰、早稲田大学データ科学教育チーム
Total Pages
192
Publisher
サイエンス社
ISBN
9784781915678
Related Report
-
[Book] データ科学入門I2022
Author(s)
松嶋敏泰,中原悠太,小林学,堀井俊佑,野村亮
Total Pages
192
Publisher
サイエンス社
ISBN
9784781915401
Related Report
-