• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Computational algorithms for the stationary distribution of Markov chains based on the system of inequalities and its application to queueing models

Research Project

Project/Area Number 19K11841
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60020:Mathematical informatics-related
Research InstitutionOsaka University

Principal Investigator

Takine Tetsuya  大阪大学, 大学院工学研究科, 教授 (00216821)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsマルコフ連鎖 / 条件付き定常分布 / 不等式系 / 数値計算法 / 待ち行列モデル / 定常分布
Outline of Research at the Start

本研究では,可算無限な状態集合上で定義された斉時かつエルゴード的な連続時間マルコフ連鎖における条件付き定常分布の新たな数値計算法を開発し,各種待ち行列モデルへの応用を目指す.具体的には,一般のマルコフ連鎖における条件付き定常分布を推移率行列の北西角がもつ情報から得られる線形不等式系で特徴付け,これを元に新たな条件付き定常分布の数値計算法を開発する.なお,この数値計算法では出力結果の誤差上界も同時に出力される.さらに,開発した数値計算法を基礎として,従来の行列解析法では取り扱うことができなかった各種待ち行列モデルに対して,それらに固有の構造を活用した数値的解法を確立する.

Outline of Final Research Achievements

We have developed a new computational method for the conditional stationary distribution in continuous-time Markov chains. In previous studies, the (conditional) stationary distribution is characterized as the solution of a system of linear equations, and a numerical calculation method has been developed based on this. In this study, on the other hand, the conditional stationary distribution in a general Markov chain is characterized by a system of linear inequalities obtained from the information contained in the northwest corner of the transition rate matrix, and a new computational method with guaranteed accuracy for the conditional stationary distribution was developed based on this. Furthermore, based on the developed numerical calculation method, we have established a numerical solution method with guaranteed accuracy for a queueing model in which the arrival rate and disaster rate are level-dependent, which could not be handled by conventional matrix analysis methods.

Academic Significance and Societal Importance of the Research Achievements

マルコフ連鎖の定常分布は平衡方程式と呼ばれる等式により特徴付けられる。それ故、従来の研究では等式を元にした解法が議論されてきた。本研究では、遷移確率行列の北西角が持つ定常分布に関する情報を不等式で表現し、解が存在する領域(解空間)を明示的に与えた。さらに、北西角に含まれている状態の内、北西角に含まれない状態から1ステップで到達可能な態の集合が与えられれば、解空間が多面体の相対的内部で与えられることを示した。特別な構造をもたないマルコフ連鎖の定常分布の性質はほとんど議論されておらず、本研究の成果は、今後、さらなる理論の進化に貢献すると思われる。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (3 results)

All 2022 2021 2020

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results)

  • [Journal Article] On level-dependent QBD processes with explosive state space2022

    • Author(s)
      T. Takine
    • Journal Title

      Queueing Systems

      Volume: 100 Issue: 3-4 Pages: 353-355

    • DOI

      10.1007/s11134-022-09796-1

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] NUMERICAL IMPLEMENTATION OF THE AUGMENTED TRUNCATION APPROXIMATION TO SINGLE-SERVER QUEUES WITH LEVEL-DEPENDENT ARRIVALS AND DISASTERS2021

    • Author(s)
      Masatoshi Kimura and Tetsuya Takine
    • Journal Title

      Journal of the Operations Research Society of Japan

      Volume: 64 Issue: 2 Pages: 61-86

    • DOI

      10.15807/jorsj.64.61

    • NAID

      130008031550

    • ISSN
      0453-4514, 2188-8299
    • Year and Date
      2021-04-30
    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Characterization of the conditional stationary distribution in Markov chains via systems of linear inequalities2020

    • Author(s)
      Masatoshi Kimura and Tetsuya Takine
    • Journal Title

      Advances in Applied Probability

      Volume: 52 Issue: 4 Pages: 1249-1283

    • DOI

      10.1017/apr.2020.40

    • Related Report
      2020 Research-status Report
    • Peer Reviewed

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi