• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Adaptive Model Order Reduction for Large-scale Nonlinear Dynamical Systems and Its Application

Research Project

Project/Area Number 19K12004
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60100:Computational science-related
Research InstitutionKagawa University

Principal Investigator

Tanji Yuichi  香川大学, 創造工学部, 教授 (10306988)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Keywordsハイパフォーマンスコンピューティング / シミュレーション工学 / 医用工学 / 生理学
Outline of Research at the Start

モデル低次元化は,大規模な非線形/線形微分代数方程式で表された原システムを縮退する方法である。低次元化された微分方程式を解析することで,効率良くシステムの動作を確認することができるため,アナログ/ディジタル/マイクロ波集積回路,プリント基板設計のための電子系設計自動化,制御器の設計に,モデル低次元化は有効に用いられ得る。しかしながら,低周波での精度を保証することが困難であったため,その有効性にも関わらず利用が進んでいないのが現状である。本研究計画では,この欠点を克服するために,低周波での精度を保証した非線形動力学システムの適応型モデル低次元化を提案する。

Outline of Final Research Achievements

We proposed a CT image reconstruction using nonlinear model order reduction. Considering proper orthogonal decomposition, a method based on the Volterra series, piecewise trajectory linearized method, and Tensor operation, we confirmed that proper orthogonal decomposition is effective for image reconstruction. Proper orthogonal decomposition provides good image quality, but the accuracy decreases when projection data (input) are far from the input data where the reduced-order model is generated. To improve the accuracy, we made the variance-covariance matrix using multiple inputs of interest and generated the reduced-order model. Consequently, a high-quality reconstructed image was obtained.

Academic Significance and Societal Importance of the Research Achievements

非線形モデル低次元化は,電子系設計自動化,制御,数値解析の分野で研究が行われてきたが,本研究によって,保健・医療分野にも応用できることを示した。また,近年,モデル低次元化手法としては,固有直交分解よりも他の方法に注目が集まっていたが,これに反して固有直交分解でなければ低次元化できない問題があることを示したことは,モデル低次元化の研究にとって,非常に有益である。また,提案手法は医用画像再構成に対して,人工知能技術の導入が可能であることを示している。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (9 results)

All 2022 2021 2020

All Journal Article (5 results) (of which Peer Reviewed: 5 results,  Open Access: 4 results) Presentation (4 results)

  • [Journal Article] Application of Parameterized Nonlinear Model Order Reduction to CT Image Reconstruction2022

    • Author(s)
      T. Suehiro and Y. Tanji
    • Journal Title

      Proc. 2022 International Symposium on Nonlinear Theory and its Applications

      Volume: 1 Pages: 613-616

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Steady-State Analysis and Design of Class-E Rectifier Using Discrete Fourier Transforms2022

    • Author(s)
      Y. Tanji
    • Journal Title

      Nonlinear Theory and Its Applications

      Volume: E13-N Pages: 615-632

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Nonlinear model order reduction of continuous-time image reconstruction systems2021

    • Author(s)
      Yuichi Tanji and Ken’ichi Fujimoto
    • Journal Title

      Nonlinear Theory and Its Applications, IEICE

      Volume: 12 Issue: 3 Pages: 512-525

    • DOI

      10.1587/nolta.12.512

    • NAID

      130008060792

    • ISSN
      2185-4106
    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Improvements of reservoir computing with proper regularization term2021

    • Author(s)
      Takeshi Suehiro and Yuichi Tanji
    • Journal Title

      Proceedings of IEEE Workshop on Nonlinear Circuit Networks

      Volume: - Pages: 46-48

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Nonlinear Model Order Reduction of Continuous-Time Image Reconstruction Systems2021

    • Author(s)
      Yuichi Tanji, Ken'ichi Fujimoto,
    • Journal Title

      Nonlinear Theory and Its Applications

      Volume: -

    • NAID

      130008060792

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 非線形動力学システムに基づくCT画像再構成における マルチGPUを用いた高速化2020

    • Author(s)
      植村大地,丹治裕一,藤本憲市,北島博之,堀川洋
    • Organizer
      電子情報通信学会 非線形問題研究会
    • Related Report
      2020 Research-status Report
  • [Presentation] 効率的な誤差評価に基づく大規模線形回路網の適応型モデル低次元化2020

    • Author(s)
      友成元熙,丹治裕一
    • Organizer
      友成元熙,丹治裕一
    • Related Report
      2020 Research-status Report
  • [Presentation] Adaptive Selections of Krylov Subspaces for Reduced-Order Modeling of Large-Scale RLC Networks2020

    • Author(s)
      Motohiro Tomonari, Yuichi Tanji
    • Organizer
      2020 IEEE Workshop on Nonlinear Circuit Networks
    • Related Report
      2020 Research-status Report
  • [Presentation] Implementation of CT Image Reconstruction with Nonlinear Dynamical System on Multi- GPUs2020

    • Author(s)
      Taichi Uemura Yuichi Tanji (Kagawa University)
    • Organizer
      2020 IEEE Workshop on Nonlinear Circuit Networks
    • Related Report
      2020 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi