Project/Area Number |
19K12040
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 61010:Perceptual information processing-related
|
Research Institution | Tokyo University of Agriculture and Technology |
Principal Investigator |
Hotta Seiji 東京農工大学, 工学(系)研究科(研究院), 准教授 (90346932)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | パターン認識 / 機械学習 / 害獣対策 / 動物福祉 / 人工パターン生成 / アニマルウェルフェア / 特徴抽出 / 音声フィルタ / 少数サンプル問題 |
Outline of Research at the Start |
本研究では,害獣に関する音声や画像データが手元に少数しかなくても高精度に害獣を検出および認識できるように,当該害獣に特化した特徴設計と学習データの人工的な生成方法を確立することを目的とする.これは,大量の学習データを集めることができれば物体認識や時系列データの予測で高い精度を達成できる深層学習を害獣検出・認識に利用することが可能であるが,先述したように本研究で対象としている特定の害獣に関しては,学習データを収集すること自体が容易ではないためである.
|
Outline of Final Research Achievements |
We conducted experimental research to demonstrate that the generation of artificial audio and image patterns repellent to specific harmful animals, can moderately control the behavior of these animals. Additionally, we conducted research on the detection and behavior estimation of free-range chickens from videos, as an application of this study to livestock animals. Similar to harmful animals, the collection of training samples was challenging in this study as well. However, through the application of the artificial training data generation method developed in this research, we experimentally confirmed the potential for improving the accuracy of detection and behavior estimation.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は,動物を対象とした機械による害獣駆除や動物福祉のための基盤技術である画像・音声データを利用したパターン認識技術の開発に寄与するものである.具体的には,少数データから害獣をコントロールするための人工音声や視覚パターンを生成する手法と,家畜の検出や行動推定の精度を向上させるための人工パターンを生成する手法を提案し,実験により害獣に対しては行動を制御することが可能であること,および動物福祉に対しては家畜動物の検出や行動認識の精度向上に効果があることを示した.
|