• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of a Skin Cancer Diagnosis Support System Based on Highly Accurate Melanoma Structure Pattern Extraction Technology

Research Project

Project/Area Number 19K12054
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61010:Perceptual information processing-related
Research InstitutionFukui University of Technology

Principal Investigator

Kimori Yoshitaka  福井工業大学, 環境情報学部, 教授 (10585277)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2019: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywordsダーモスコピー画像 / メラノーマ構造パターン / mathematical morphology / 深層学習 / メラノーマ構造 / Mathematical morphology / メラノーマ / ニューラルネットワーク / 病変特徴の記述 / 構造パターン抽出 / 構造パターン
Outline of Research at the Start

本研究では,ダーモスコピー画像の処理・解析に基づく,皮膚がん支援システムを構築することを目的とする.本システムでは,独自の画像演算理論に基づき,画像処理の共通基盤を構築する.これにより,(1)「高精度なメラノーマ構造パターン抽出に基づく病変識別」,(2)「メラノーマ構造パターンの統合的可視化」を同時に実現しうる要素技術を開発する.これらの質的に異なる2つの情報を提示することにより,皮膚科医の判断を効果的に支援するシステムの開発を行う.

Outline of Final Research Achievements

In this study, a segmentation method for lesion regions, an automatic extraction method for melanoma structural patterns, and an integrated visualization method for multiple structural feature information were developed for dermatoscopic images. The aim was to establish a unified base image processing system for the structural analysis of melanoma, leveraging mathematical morphology-based image processing theory. The research demonstrated that combining the developed morphological image processing techniques with deep learning algorithms improves the accuracy of lesion segmentation, thereby outperforming traditional methods.

Academic Significance and Societal Importance of the Research Achievements

本研究では,Mathematical morphologyに基づく画像処理手法:Rotational morphological processingによって,ダーモスコピー画像の処理に関する共通基盤を構築した.多様な病変パターンの抽出等において,汎用的かつ論理的一貫性を持つ処理の実現は,実用的意義を有するものである.また,病変領域をセグメンテーションするために考案した深層学習の手法は,ニューラルネットワークが対象のみに着目することを可能にするため,解析対象の認識精度を向上させることができる.幅広い分野での応用展開が期待できる.

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (2 results)

All 2022 2020

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results)

  • [Journal Article] A Morphological Image Preprocessing Method Based on the Geometrical Shape of Lesions to Improve the Lesion Recognition Performance of Convolutional Neural Networks2022

    • Author(s)
      Yoshitaka Kimori
    • Journal Title

      IEEE Access

      Volume: 10 Pages: 70919-70936

    • DOI

      10.1109/access.2022.3187507

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A morphological image processing method to improve the visibility of pulmonary nodules on chest radiographic images2020

    • Author(s)
      Kimori Yoshitaka
    • Journal Title

      Biomedical Signal Processing and Control

      Volume: 57 Pages: 101744-101744

    • DOI

      10.1016/j.bspc.2019.101744

    • Related Report
      2019 Research-status Report
    • Peer Reviewed

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi