• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Proposal for the development of a high-speed logic machine learning system that realizes the creation of summary sentences that can explain the learning results

Research Project

Project/Area Number 19K12105
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionTokyo University of Science

Principal Investigator

Nishiyama Hiroyuki  東京理科大学, 理工学部経営工学科, 教授 (80328567)

Co-Investigator(Kenkyū-buntansha) 秦野 亮  東京理科大学, 理工学部経営工学科, 助教 (50808657)
Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords高速論理型機械学習器 / 要約文章作成 / 分散人工知能
Outline of Research at the Start

本研究では,人間の熟考に基づく知恵や経験を可読可能な情報として抽出することを目的として,抽出された知恵や経験を要約文章として生成可能な高速論理型機械学習器の開発を提案する.論理型機械学習器は従来の機械学習器と異なり,得られた判定ルールは論理式として生成される.本論理式を可読可能な要約文章として表現することにより,様々な分野の熟練者の知恵や技術をマニュアル的な情報として活用することが可能になる.本提案の実現により,人間の経験則に基づく様々な分野の英知を,論理的な説明情報として明らかにすることができる.

Outline of Final Research Achievements

In this research, we proposed the development of a high-speed logic machine learning system that can generate the extracted wisdom and experience as a summary sentence for the purpose of extracting the wisdom and experience based on human contemplation as readable information. So, we designed a collaborative module that implements the collaborative communication protocol required for collaborative processing in order to speed up the logical machine learning device by distributed processing and improve the accuracy of the learning process. We also designed a summary text creation module and a high-speed logic machine learning system that implements both modules. By operating this system via a cloud environment, we provided dairy farmers with the learning results for the data obtained in the dairy field as summary sentences, and contributed as a system that can advise the development process and disease status of the dairy cow.

Academic Significance and Societal Importance of the Research Achievements

本研究では,人間の熟考に基づく知恵や経験を可読可能な情報として抽出することを目的として,抽出された知恵や経験を要約文章として生成可能な高速論理型機械学習器の開発を提案し,高速論理型並列機械学習システムとして実装した.本提案の実現により,論理型機械学習器の高速な運用を可能にするだけでなく,人間の経験則に基づく様々な分野の英知を,論理的な説明情報として明らかにすることが可能になる.その実施例として,本研究では酪農分野に本システムを応用し,得られたデータに対する学習結果を酪農家に対してウエブブラウザを介して要約情報等の提供を行い,その発育過程や疾病状況を助言可能にするなどの貢献を実現した.

Report

(4 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (11 results)

All 2022 2021 2020 2019

All Journal Article (4 results) (of which Peer Reviewed: 4 results) Presentation (7 results) (of which Int'l Joint Research: 7 results)

  • [Journal Article] A Study on Deception Detection in Online Interviews Using Machine Learning with Facial Expressions and Pulse Rate2022

    • Author(s)
      Kento Tsuchiya, Ryo Hatano and Hiroyuki Nishiyama
    • Journal Title

      Proceedings of the Joint Symposium of The Twenty-Seventh International Symposium on Artificial Life and Robotics (AROB 27th 2022)

      Volume: - Pages: 443-448

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Distraction Detection of Lectures in E-learning Using Machine Learning Based on Human Facial Features and Postural Information2022

    • Author(s)
      Iku Betto, Ryo Hatano and Hiroyuki Nishiyama
    • Journal Title

      Proceedings of the Joint Symposium of The Twenty-Seventh International Symposium on Artificial Life and Robotics (AROB 27th 2022)

      Volume: - Pages: 341-346

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Estimation of habit information from male voice using machine learning methods2022

    • Author(s)
      Takaya Yokoo, Ryo Hatano and Hiroyuki Nishiyama
    • Journal Title

      Proceedings of the Joint Symposium of The Twenty-Seventh International Symposium on Artificial Life and Robotics (AROB 27th 2022)

      Volume: - Pages: 449-454

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Market prediction aids using machine learning based on social media specific features2022

    • Author(s)
      Satoshi Sekioka, Ryo Hatano and Hiroyuki Nishiyama
    • Journal Title

      Proceedings of the Joint Symposium of The Twenty-Seventh International Symposium on Artificial Life and Robotics (AROB 27th 2022)

      Volume: - Pages: 460-465

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Presentation] A Study on Deception Detection in Online Interviews Using Machine Learning with Facial Expressions and Pulse Rate2022

    • Author(s)
      Kento Tsuchiya, Ryo Hatano and Hiroyuki Nishiyama
    • Organizer
      The Twenty-Seventh International Symposium on Artificial Life and Robotics (AROB 27th 2022)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Distraction Detection of Lectures in E-learning Using Machine Learning Based on Human Facial Features and Postural Information2022

    • Author(s)
      Iku Betto, Ryo Hatano and Hiroyuki Nishiyama
    • Organizer
      The Twenty-Seventh International Symposium on Artificial Life and Robotics (AROB 27th 2022)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Estimation of habit information from male voice using machine learning methods2022

    • Author(s)
      Takaya Yokoo, Ryo Hatano and Hiroyuki Nishiyama
    • Organizer
      The Twenty-Seventh International Symposium on Artificial Life and Robotics (AROB 27th 2022)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Market prediction aids using machine learning based on social media specific features2022

    • Author(s)
      Satoshi Sekioka, Ryo Hatano and Hiroyuki Nishiyama
    • Organizer
      The Twenty-Seventh International Symposium on Artificial Life and Robotics (AROB 27th 2022)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Prediction of Bovine Mastitis Considering Differences among Dairy Farms using Machine Learning2021

    • Author(s)
      Ginpie Yahagi, Ryo Hatano, Hiroyuki Nishiyama
    • Organizer
      25th International Symposium on Artificial Life and Robotics AROB 26th 2021
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Memory leak Detection using Clustering and Logic-based Machine Learning2020

    • Author(s)
      Yasumori Muta, Ryo Hatano and Hiroyuki Nishiyama
    • Organizer
      25th International Symposium on Artificial Life and Robotics (AROB2020)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Estimating Productivity of Dairy Cows by Inductive Logic Programming2019

    • Author(s)
      Shun Sasaki, Ryo Hatano, Hayato Ohwada, and Hiroyuki Nishiyama
    • Organizer
      29th International Conference on Inductive Logic Programming (ILP2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2019-04-18   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi