Project/Area Number |
19K12114
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 61030:Intelligent informatics-related
|
Research Institution | University of Tsukuba |
Principal Investigator |
Chen Hanxiong 筑波大学, システム情報系, 准教授 (60251047)
|
Co-Investigator(Kenkyū-buntansha) |
古瀬 一隆 白鴎大学, 経営学部, 教授 (10291288)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | 情報推薦 / クエリ属性改良 / 逆ランク / 近傍検索 / 検索アルゴリズム / 逆情報推薦 / 商品改良 / 多次元検索 / 逆ランク検索 / データマイニング |
Outline of Research at the Start |
情報推薦はユーザに効率よく意思決定支援を行う。今までの研究は「ユーザ=消費者」ということが前提で、例えば顧客に商品・情報を薦めることが主要目標である。本研究は逆に、情報供給者・生産者をユーザと捉え情報利用者・消費者との合致度から供給者に品質向上に即時に有益な情報(商品・サービス・発信情報・など.)を提供するということを目標とする。研究成果は供給者側への情報推薦による商品の改良、ネットワーク侵入・迷惑メール対応、情報発信サイトへの応用が期待される。
|
Outline of Final Research Achievements |
Information recommendation provides users with efficient decision-making support. The research so far has been based on the premise that "users = consumers", and the main goal has been, for example, to recommend products and information to customers. This research regards information suppliers and producers as users, and based on the degree of matching with information users and consumers, provides information (products, services, information, etc.) that is immediately useful for quality improvement to suppliers. In this research, we developed various neighborhood/similarity search algorithms to approach this NP-hard problem. Furthermore, we devised a unique indexing method to solve the problem that spatial indexing is not effective for high-dimensional vectors. We also developed a prototype mobile application that simulates product improvement by recommending information to suppliers.
|
Academic Significance and Societal Importance of the Research Achievements |
商用データ、クラウド(crowd)コンピューティングで正当な評価データ生成を期待する一方、スパムデータの大量生成によって妨害も可能である。近年、SNSで”いいね”を買う政治家や自動生成アカウントで敵味方の発信にリスポンス・反応し、世論操作するような行為が多く見られた。「逆」情報推薦による供給側の情報品質向上を目的とする本研究で開発されたアルゴリズムはこのような場面に迅速に対応して発信情報を推薦するができ、本研究成果の波及効果の1つにあげたい。 また、迷惑メールデータ、ネットワーク侵入検知データを利用して脆弱要件を検出し、改良アドバイスの作成への応用が期待される。
|