• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on improving information quality on the supply side by "reverse" information recommendation

Research Project

Project/Area Number 19K12114
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

Chen Hanxiong  筑波大学, システム情報系, 准教授 (60251047)

Co-Investigator(Kenkyū-buntansha) 古瀬 一隆  白鴎大学, 経営学部, 教授 (10291288)
Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords情報推薦 / クエリ属性改良 / 逆ランク / 近傍検索 / 検索アルゴリズム / 逆情報推薦 / 商品改良 / 多次元検索 / 逆ランク検索 / データマイニング
Outline of Research at the Start

情報推薦はユーザに効率よく意思決定支援を行う。今までの研究は「ユーザ=消費者」ということが前提で、例えば顧客に商品・情報を薦めることが主要目標である。本研究は逆に、情報供給者・生産者をユーザと捉え情報利用者・消費者との合致度から供給者に品質向上に即時に有益な情報(商品・サービス・発信情報・など.)を提供するということを目標とする。研究成果は供給者側への情報推薦による商品の改良、ネットワーク侵入・迷惑メール対応、情報発信サイトへの応用が期待される。

Outline of Final Research Achievements

Information recommendation provides users with efficient decision-making support. The research so far has been based on the premise that "users = consumers", and the main goal has been, for example, to recommend products and information to customers. This research regards information suppliers and producers as users, and based on the degree of matching with information users and consumers, provides information (products, services, information, etc.) that is immediately useful for quality improvement to suppliers. In this research, we developed various neighborhood/similarity search algorithms to approach this NP-hard problem. Furthermore, we devised a unique indexing method to solve the problem that spatial indexing is not effective for high-dimensional vectors. We also developed a prototype mobile application that simulates product improvement by recommending information to suppliers.

Academic Significance and Societal Importance of the Research Achievements

商用データ、クラウド(crowd)コンピューティングで正当な評価データ生成を期待する一方、スパムデータの大量生成によって妨害も可能である。近年、SNSで”いいね”を買う政治家や自動生成アカウントで敵味方の発信にリスポンス・反応し、世論操作するような行為が多く見られた。「逆」情報推薦による供給側の情報品質向上を目的とする本研究で開発されたアルゴリズムはこのような場面に迅速に対応して発信情報を推薦するができ、本研究成果の波及効果の1つにあげたい。
また、迷惑メールデータ、ネットワーク侵入検知データを利用して脆弱要件を検出し、改良アドバイスの作成への応用が期待される。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (12 results)

All 2022 2021 2020

All Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results) Presentation (9 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] Continuous top-k spatial-keyword search on dynamic objects2021

    • Author(s)
      Yuyang Dong, Chuan Xiao, Hanxiong Chen, Jeffrey Xu Yu, Kunihiro Takeoka, Masafumi Oyamada and Hiroyuki Kitagawa
    • Journal Title

      VLDBJ

      Volume: 30 Pages: 141-161

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Aggregate Nearest Neighborhood Queries2021

    • Author(s)
      Hayata Takagi, Hanxiong Chen, Kazutaka Furuse and Hiroyuki Kitagawa
    • Journal Title

      The Advances in Intelligent Systems and Computing

      Volume: 1364 Pages: 396-414

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Unifying Spatial Keyword Indexing in Continuous Search on Dynamic Objects2021

    • Author(s)
      Yasuyuki Kato, Hanxiong Chen, Kazutaka Furuse and Hiroyuki Kitagawa
    • Journal Title

      The Advances in Intelligent Systems and Computing

      Volume: 1364 Pages: 415-430

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] 属性改良問題の高速化に対する検討2022

    • Author(s)
      此島魁二, 陳漢雄, 天笠俊之, 古瀬一隆
    • Organizer
      DEIM
    • Related Report
      2021 Research-status Report
  • [Presentation] A Study on Dense Nearest Neighborhood Query2022

    • Author(s)
      Hina Suzuki, Hanxiong Chen, Kazutaka Furuse and Toshiyuki Amagasa
    • Organizer
      DEIM
    • Related Report
      2021 Research-status Report
  • [Presentation] Dense Nearest Neighborhood Query2021

    • Author(s)
      Hina Suzuki, Hanxiong Chen, Kazutaka Furuse and Toshiyuki Amagasa
    • Organizer
      International Conference on Intelligent Technologies and Applications (INTAP 2021)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Unifying Spatial Keyword Indexing in Continuous Search on Dynamic Objects2021

    • Author(s)
      Yasuyuki Kato, Hanxiong Chen, Kazutaka Furuse, Hiroyuki Kitagawa
    • Organizer
      Future of Information and Communication Conference (FICC2021)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Aggregate Nearest Neighborhood Queries2021

    • Author(s)
      Hayata Takagi, Hanxiong Chen, Kazutaka Furuse, Hiroyuki Kitagawa
    • Organizer
      Future of Information and Communication Conference (FICC2021)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Dense Nearest Neighborhood問題の検索手法2020

    • Author(s)
      鈴木日奈, 陳漢雄, 古瀬一隆
    • Organizer
      DEIM2020(第12回データ工学と情報マネジメントに関するフォーラム)
    • Related Report
      2019 Research-status Report
  • [Presentation] クエリ集合における属性改良問題2020

    • Author(s)
      此島魁二, 陳漢雄, 古瀬一隆
    • Organizer
      DEIM2020(第12回データ工学と情報マネジメントに関するフォーラム)
    • Related Report
      2019 Research-status Report
  • [Presentation] 動的オブジェクトの継続モニタリングにおける効率化の提案2020

    • Author(s)
      加藤靖之, 北川博之, 陳漢雄, 古瀬一隆
    • Organizer
      DEIM2020(第12回データ工学と情報マネジメントに関するフォーラム)
    • Related Report
      2019 Research-status Report
  • [Presentation] Aggregate Nearest Neighborhood Queries2020

    • Author(s)
      高木颯汰, 陳漢雄, 古瀬一隆, 北川博之
    • Organizer
      DEIM2020(第12回データ工学と情報マネジメントに関するフォーラム)
    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi