• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Meta-analyses of artificial intelligence for promoting evidence-based medicine of non-communicable diseases

Research Project

Project/Area Number 19K12840
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 90130:Medical systems-related
Research InstitutionNiigata University

Principal Investigator

Kodama Satoru  新潟大学, 医歯学総合研究科, 特任准教授 (50638781)

Co-Investigator(Kenkyū-buntansha) 加藤 公則  新潟大学, 医歯学総合研究科, 特任教授 (00303165)
藤原 和哉  新潟大学, 医歯学総合研究科, 特任准教授 (10779341)
渡邊 賢一  新潟大学, 医歯学総合研究科, 客員研究員 (70175090)
Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords人工知能 / 糖尿病 / メタ解析 / 機械学習 / 生活習慣病 / エビデンスの基づく医療 / 自然言語処理
Outline of Research at the Start

1) MA対象研究デザイン論文検出、2) 論文テーマ認識、3) テーマ設定および該当論文抽出の3つのAIを開発するため、文献データベース(EMBASE)でヒットした最新のabstractと索引語(EMTREE)がついた論文について、申請者がこれまでの豊富なSR/MA経験で培った思考プロセスに即し、論文タイトルの各用語と主要テーマを関連付けて機械学習させ、目的に沿った論文を検出する能力を評価する。

Outline of Final Research Achievements

Evidence for usefulness of artificial intelligence (AI) in primary prevention of non-communicable diseases has not been established. This project aimed to assess the ability of AI to predict the onset of non-communicable diseases, focusing on type 2 diabetes mellitus (T2D) and hypoglycemia, a major barrier of treating diabetes, using a meta-analytic technique. The results of meta-analysis were interpret as meaning that the ability of current machine learning was acceptable for clinicians to discriminate individuals at high risk of T2D but insufficient for individuals to recognize their risk of T2D and that it is sufficient as a tool for patients with diabetes to prepare for their impeding hypoglycemia. The study is the first step to apply the AIs to clinical practice of non-communicable diseases, especially identifying individuals which were at high risk and thus require strict managements for primary prevention.

Academic Significance and Societal Importance of the Research Achievements

予後予測に必須であるが、原理・解釈が難しく敬遠されがちなhierarchical summary receiver operating characteristicモデルを用いたメタ解析を大々的に行った研究プロジェクトである。人工知能の糖尿病、低血糖予測能力を評価した本研究は、社会的要請の高いAIの糖尿病診療にとって極めて重要な布石であり、今後、他の生活習慣病への拡張も期待大である。

Report

(4 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (11 results)

All 2021 2020 2019

All Journal Article (5 results) (of which Peer Reviewed: 5 results,  Open Access: 3 results) Presentation (5 results) (of which Int'l Joint Research: 2 results) Book (1 results)

  • [Journal Article] Predictive ability of current machine learning algorithms for type 2 diabetes mellitus - A meta-analysis.2021

    • Author(s)
      Kodama S, Fujihara K, Horikawa C, Kitazawa M, Iwanaga M, Kato K, Watanabe K, Nakagawa Y, Matsuzaka T, Shimano H, Sone H
    • Journal Title

      J Diabetes Investig.

      Volume: in press Issue: 5 Pages: 900-908

    • DOI

      10.1111/jdi.13736

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Ability of current machine learning algorithms to predict and detect hypoglycemia in patients with diabetes mellitus: Meta-analysis2021

    • Author(s)
      Kodama S, Fujihara K, Shiozaki H, Horikawa C, Yamada MH, Sato T, Yaguchi Y, Yamamoto M, Kitazawa M, Iwanaga M, Matsubayashi Y, Sone H
    • Journal Title

      JMIR Diabetes

      Volume: 6 (1) Issue: 1 Pages: e22458-e22458

    • DOI

      10.2196/22458

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Meta-analytic research of the dose-response relationship between salt intake and risk of heart failure2021

    • Author(s)
      Kodama S, Horikawa C, Fujihara K, Hatta M, Takeda Y, Nedachi R, Kato K, Watanabe K, Sone H
    • Journal Title

      Hypertens Res

      Volume: - Issue: 7 Pages: 885-887

    • DOI

      10.1038/s41440-021-00632-2

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Network meta-Analysis of drug therapies for lowering uric acid and mortality risk in patients with heart failure2020

    • Author(s)
      Kodama S, Fujihara K, Horikawa C, Yamada M, Sato T, Yaguchi Y, Yamamoto M, Kitazawa M, Matsubayashi Y, Yamada T, Watanabe K, Sone H
    • Journal Title

      Cardiovascular drugs and therapy

      Volume: - Issue: 6 Pages: 1217-25

    • DOI

      10.1007/s10557-020-07097-4

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Diabetes mellitus and risk of new-onset and recurrent heart failure: a systematic review and meta-analysis2020

    • Author(s)
      Kodama S, Fujihara K, Horikawa C, Sato T, Iwanaga M, Yamada T, Kato K, Watanabe K, Shimano H, Izumi T, Sone H
    • Journal Title

      ESC heart failure

      Volume: 7 (5) Issue: 5 Pages: 2146-74

    • DOI

      10.1002/ehf2.12782

    • NAID

      120007163352

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] メタ解析的アプローチによる塩分摂取と心不全発症リスクとの量-反応分析2021

    • Author(s)
      児玉 暁, 藤原 和哉, 渡辺 賢一, 加藤 公則, 曽根 博仁.
    • Organizer
      第118回日本内科学会
    • Related Report
      2021 Annual Research Report
  • [Presentation] Predictive Ability Of Incident Type 2 Diabetes Mellitus (t2dm) Using Machine Learning Algorithms - A Meta-analysis2020

    • Author(s)
      Kodama S, Sato T, Yamamoto M, Ishiguro H, Iwanaga M, Fujihara K, Yamada T, Kato K, Sone H
    • Organizer
      American Diabetes Association (ADA) 80th Scientific Sessions
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Ability For Detecting Or Predicting Hypoglycemia With The Aid Of Machine Learning Techniques - A Meta-analysis2020

    • Author(s)
      Kodama S, Yamada M, Yaguchi Y, Kitazawa M, Kaneko M, Matsubayashi Y, Fujihara K, Iwanaga M, Kato K, Sone H
    • Organizer
      American Diabetes Association (ADA) 80th Scientific Sessions
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] 心不全患者に対する高尿酸血症治療薬の予後改善効果に関するネットワークメタ分析2020

    • Author(s)
      児玉暁、藤原和哉、渡辺賢一、加藤公則、曽根博仁
    • Organizer
      第52回日本動脈硬化学会
    • Related Report
      2020 Research-status Report
  • [Presentation] メタ解析からみた糖尿病の心不全発症危険因子としての疫学的エビデンス2019

    • Author(s)
      児玉暁, 藤原和哉, 山本正彦,石澤正博, 石黒創, 松林泰弘, 松永佐澄志, 渡辺賢一, 加藤公則, 曽根博仁
    • Organizer
      第116回日本内科学会
    • Related Report
      2019 Research-status Report
  • [Book] The Lipid2021

    • Author(s)
      児玉暁、曽根博仁
    • Total Pages
      9
    • Publisher
      メディカルビュー社
    • ISBN
      9784779224423
    • Related Report
      2021 Annual Research Report

URL: 

Published: 2019-04-18   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi