• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On p-adic properties and algebro-geometric properties of algebraic variety in positive characteristic

Research Project

Project/Area Number 19K14501
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11010:Algebra-related
Research InstitutionNagoya University

Principal Investigator

Yobuko Fuetaro  名古屋大学, 多元数理科学研究科, 特任助教 (10825095)

Project Period (FY) 2019-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
KeywordsF-分裂 / 準F-分裂 / カラビヤウ / ファノ / klt特異点 / F-正則 / 準F-正則 / Hodge-Witt / フロベニウス分裂 / 準フロベニウス分裂 / F-特異点 / カラビヤウ多様体 / ファノ多様体 / 正標数 / 有理二重点 / del Pezzo曲面 / 強F-正則 / 特異点 / Witt環 / 変形理論 / 正標数における変形理論
Outline of Research at the Start

準フロベニウス分裂性をキーワードに正標数の代数多様体の幾何学的性質と数論的性質について研究を行う.定義方程式からフロベニウス分裂するかどうかを判定するアルゴリズム(Fedderの判定法)が知られているが,これを準フロベニウス分裂に対して拡張することが一つの大きな目標となる.また数論幾何学に対する応用としては,正標数の代数多様体の標数0への“標準的”持ち上げについて,分裂性の言葉を用い新たな視点を導入することを目標としている.さらに代数幾何学への応用としては,標数0で成り立つことが知られている小平型消滅定理を正標数においても準フロベニウス分裂の仮定のもとで証明することを目指している.

Outline of Final Research Achievements

I studied algebraic varieties in positive characteristic from the view point of quasi-F-splitting. Inspired by my precede computation on two dimensional rational double points, Jacob Witaszek, Hiromu Tanaka, Tatsuro Kawakami, Teppei Takamatsu, Sho Yoshikawa, and I began a project on quasi-f-splitting and birational geometry and its singularity. In our joint work, we proved that two dimensional klt singularities and three dimensional singularities in characteristic greater than 41 are quasi-F-split. We also developed a theory of quasi-F-regularity, which is an extension of F-regularity and proved its fundamental properties and found an interesting new phenomena.

Academic Significance and Societal Importance of the Research Achievements

正標数の代数幾何学は複素幾何学や整数論との関連の中で発展を遂げた分野である.特に複素代数幾何学との対比の中で,標数0ではおき得ない種々の現象が発見されてきた.一方,正標数代数幾何学は暗号理論など純粋数学以外への応用を持つものであり,これまでより深い一般論の構築が必要とされている.本研究では,準F-分裂性という概念をテーマにこの問題に取り組み一定の成果を上げた.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (23 results)

All 2024 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (3 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results) Presentation (18 results) (of which Int'l Joint Research: 2 results,  Invited: 17 results)

  • [Int'l Joint Research] プリンストン大学(米国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] プリンストン大学(米国)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] ミシガン大学(米国)

    • Related Report
      2021 Research-status Report
  • [Journal Article] Mass formula and Oort's conjecture for supersingular abelian threefolds2021

    • Author(s)
      Karemaker Valentijn、Yobuko Fuetaro、Yu Chia-Fu
    • Journal Title

      Advances in Mathematics

      Volume: 386 Pages: 107812-107812

    • DOI

      10.1016/j.aim.2021.107812

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Degenerations of log Hodge de Rham spectral sequences, log Kodaira vanishing theorem in characteristic $$p>0$$ and log weak Lefschetz conjecture for log crystalline cohomologies2021

    • Author(s)
      Nakkajima Yukiyoshi、Yobuko Fuetaro
    • Journal Title

      European Journal of Mathematics

      Volume: 7 Issue: 4 Pages: 1537-1615

    • DOI

      10.1007/s40879-021-00475-8

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] 準F分裂について2024

    • Author(s)
      呼子笛太郎
    • Organizer
      正標数の可換環論とその周辺 2024 in 淡路島
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Quasi-F-splitting and Hodge-Witt2023

    • Author(s)
      呼子笛太郎
    • Organizer
      東大代数幾何セミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 準フロベニウス分裂について2023

    • Author(s)
      呼子笛太郎
    • Organizer
      東京理科大学談話会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 準F-分裂について2023

    • Author(s)
      呼子笛太郎
    • Organizer
      阪大代数幾何学セミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 準F-分裂とklt特異点2023

    • Author(s)
      呼子笛太郎
    • Organizer
      野田代数幾何学シンポジウム2023
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 準F-分裂とklt特異点2023

    • Author(s)
      呼子笛太郎
    • Organizer
      東北大学代数セミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Quasi-F-splitting and klt singularities2023

    • Author(s)
      呼子笛太郎
    • Organizer
      第 19 回北陸数論研究集会 「超幾何関数の数論とその周辺
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 準F分裂について2023

    • Author(s)
      呼子笛太郎
    • Organizer
      湯布院代数幾何学ワークショップ
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Hodge-Witt and quasi-Frobenius-splitting2023

    • Author(s)
      呼子 笛太郎
    • Organizer
      K3, Enriques Surfaces, and Related Topics
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] F-splitting, canonical lifting and Hodge-Wittness2022

    • Author(s)
      呼子 笛太郎
    • Organizer
      p-adic cohomology and arithmetic geometry 2022
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Quasi-Frobenius-split and Serre-Tate theory2021

    • Author(s)
      呼子 笛太郎
    • Organizer
      名古屋大学代数幾何学セミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] Quasi-F-split and surface singularities2021

    • Author(s)
      呼子 笛太郎
    • Organizer
      Degenerations and models of algebraic varieties and related topics
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Quasi-Frobenius-splitting and rational double points in positive characteristic2020

    • Author(s)
      呼子 笛太郎
    • Organizer
      東大京大代数幾何セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Quasi-Frobenius splittingの局所的研究2020

    • Author(s)
      呼子 笛太郎
    • Organizer
      第65回代数学シンポジウム
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Quasi-F-splitting and two dimensional singularities2020

    • Author(s)
      呼子 笛太郎
    • Organizer
      城崎代数幾何学シンポジウム 2020
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Rational double points in low characteristic and quasi- F-splitting2020

    • Author(s)
      呼子 笛太郎
    • Organizer
      Singularities and Arithmetics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Quasi-Frobenius-split and Achinger-Zdanowicz construction2019

    • Author(s)
      呼子 笛太郎
    • Organizer
      Younger generations in Algebraic and Complex geometry VI
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Quasi-Frobenius-split and Serre-Tate theory2019

    • Author(s)
      呼子 笛太郎
    • Organizer
      慶應義塾大学 代数セミナー
    • Related Report
      2019 Research-status Report
    • Invited

URL: 

Published: 2019-04-18   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi