Arithmetic Geometry via Higher Dimensional Algebraic Geometry
Project/Area Number |
19K14512
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 11010:Algebra-related
|
Research Institution | Nagoya University (2021) Kumamoto University (2019-2020) |
Principal Investigator |
Tanimoto Sho 名古屋大学, 多元数理科学研究科, 准教授 (10785786)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | Manin予想 / Fano多様体 / 有理点 / 曲線 / モジュライ空間 / 曲げ折り法 / Campana点 / 極小モデル理論 / 有理曲線 / Fano束 / モジュライ / BAB予想 / 有理点と整数点 |
Outline of Research at the Start |
代数方程式で定義される幾何学図形を代数多様体と呼び、その方程式を満たす有理数解をその多様体上の有理点と呼ぶ。Manin予想とはFano多様体と呼ばれる多様体上の有理点の数え上げの問題、つまりその多様体上の有理点の数え上げ関数の漸近公式に関する予想である。そのManin予想の幾何的側面を高次元代数幾何特に極小モデル理論を用いて研究する。特に、整数点や有理曲線のManin予想に関する研究を行う。
|
Outline of Final Research Achievements |
Rational solutions to a system of polynomial equations have been studied since the age of Greece. Polynomial equations define an algebraic variety investigated by algebraic geometers, and rational solutions are called as rational points on the variety. When there are infinitely many rational points on an algebraic variety, one can consider the counting function of rational points on that variety. One of outstanding questions is an asymptotic formula of this counting function, and this asymptotic formula is predicted by Manin's conjecture. In our research, we resolved a long standing mystery of exceptional sets in Manin's conjecture. Moreover we formulated Manin's conjecture for Campana points which are intermediate objects between rational points and integral points. Finally using analogy between rational points and curves, we studied properties of moduli spaces of curves on an algebraic variety using the perspective of Manin's conjecture.
|
Academic Significance and Societal Importance of the Research Achievements |
Manin予想の例外集合の双有理幾何学にまつわる研究は, Manin予想の理論の根幹をなす研究といえ, 専門家から高い評価を受けています. 私たちが発表した論文は希薄集合版のManin予想について基本的な文献になりつつあります. さらにCampana点のManin予想に関する研究は, 私たちの論文が発表された以降数多くのCampana点のManin予想に関する研究が生まれました. さらに曲線のモジュライ空間にまつわる研究は, 一つのムーブメントとして専門家から捉えられ, 若い数学者が研究に参画してきています.
|
Report
(4 results)
Research Products
(27 results)