• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Arithmetic Geometry via Higher Dimensional Algebraic Geometry

Research Project

Project/Area Number 19K14512
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11010:Algebra-related
Research InstitutionNagoya University (2021)
Kumamoto University (2019-2020)

Principal Investigator

Tanimoto Sho  名古屋大学, 多元数理科学研究科, 准教授 (10785786)

Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
KeywordsManin予想 / Fano多様体 / 有理点 / 曲線 / モジュライ空間 / 曲げ折り法 / Campana点 / 極小モデル理論 / 有理曲線 / Fano束 / モジュライ / BAB予想 / 有理点と整数点
Outline of Research at the Start

代数方程式で定義される幾何学図形を代数多様体と呼び、その方程式を満たす有理数解をその多様体上の有理点と呼ぶ。Manin予想とはFano多様体と呼ばれる多様体上の有理点の数え上げの問題、つまりその多様体上の有理点の数え上げ関数の漸近公式に関する予想である。そのManin予想の幾何的側面を高次元代数幾何特に極小モデル理論を用いて研究する。特に、整数点や有理曲線のManin予想に関する研究を行う。

Outline of Final Research Achievements

Rational solutions to a system of polynomial equations have been studied since the age of Greece. Polynomial equations define an algebraic variety investigated by algebraic geometers, and rational solutions are called as rational points on the variety. When there are infinitely many rational points on an algebraic variety, one can consider the counting function of rational points on that variety. One of outstanding questions is an asymptotic formula of this counting function, and this asymptotic formula is predicted by Manin's conjecture. In our research, we resolved a long standing mystery of exceptional sets in Manin's conjecture. Moreover we formulated Manin's conjecture for Campana points which are intermediate objects between rational points and integral points. Finally using analogy between rational points and curves, we studied properties of moduli spaces of curves on an algebraic variety using the perspective of Manin's conjecture.

Academic Significance and Societal Importance of the Research Achievements

Manin予想の例外集合の双有理幾何学にまつわる研究は, Manin予想の理論の根幹をなす研究といえ, 専門家から高い評価を受けています. 私たちが発表した論文は希薄集合版のManin予想について基本的な文献になりつつあります. さらにCampana点のManin予想に関する研究は, 私たちの論文が発表された以降数多くのCampana点のManin予想に関する研究が生まれました. さらに曲線のモジュライ空間にまつわる研究は, 一つのムーブメントとして専門家から捉えられ, 若い数学者が研究に参画してきています.

Report

(4 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (27 results)

All 2022 2021 2020 2019 Other

All Int'l Joint Research (5 results) Journal Article (13 results) (of which Int'l Joint Research: 7 results,  Peer Reviewed: 9 results,  Open Access: 5 results) Presentation (7 results) (of which Int'l Joint Research: 5 results,  Invited: 6 results) Remarks (2 results)

  • [Int'l Joint Research] Boston College/University of Notre Dame/Washington University, St. Louis(米国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] Boston College/University of Notre Dame/Washington University, St. Louis(米国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Boston College/Washington University St. Louis/University of Notre Dame(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] スイス連邦工科大学ローザンヌ校(スイス)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Radboud Universiteit Nijmegen(オランダ)

    • Related Report
      2019 Research-status Report
  • [Journal Article] The spaces of rational curves on del Pezzo threefolds of degree one2022

    • Author(s)
      Shimizu Nobuki、Tanimoto Sho
    • Journal Title

      European Journal of Mathematics

      Volume: 8 Issue: 1 Pages: 291-308

    • DOI

      10.1007/s40879-021-00516-2

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Geometric consistency of Manin's Conjecture2022

    • Author(s)
      Brian Lehmann、Akash Kumar Sengupta、Sho Tanimoto
    • Journal Title

      Compositio Mathematica

      Volume: 印刷中

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Classifying sections of del Pezzo fibrations, II2021

    • Author(s)
      Brian Lehmann、Sho Tanimoto
    • Journal Title

      Geometry & Topology

      Volume: 印刷中

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Campana points of bounded height on vector group compactifications2021

    • Author(s)
      Pieropan Marta、Smeets Arne、Tanimoto Sho、Varilly‐Alvarado Anthony
    • Journal Title

      Proceedings of the London Mathematical Society

      Volume: 123 Issue: 1 Pages: 57-101

    • DOI

      10.1112/plms.12391

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Campana points, Height zeta functions, and log Manin’s conjecture2021

    • Author(s)
      谷本 祥
    • Journal Title

      数理解析研究所 講究録“解析的整数論の展望と諸問題”

      Volume: 2196

    • NAID

      120007165854

    • Related Report
      2021 Annual Research Report
    • Open Access
  • [Journal Article] An introduction to Geometric Manin's conjecture2021

    • Author(s)
      谷本 祥
    • Journal Title

      都の西北代数幾何学シンポジウム 2021 報告集 “接束の正値性とその周辺”

      Volume: --

    • Related Report
      2021 Annual Research Report
    • Open Access
  • [Journal Article] Rational curves on prime Fano threefolds of index 12021

    • Author(s)
      Brian Lehmann and Sho Tanimoto
    • Journal Title

      Journal of Algebraic Geometry

      Volume: 30-1 Issue: 1 Pages: 151-188

    • DOI

      10.1090/jag/751

    • Related Report
      2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Campana points, Height zeta functions, and log Manin's conjecture2021

    • Author(s)
      Sho Tanimoto
    • Journal Title

      数理解析研究所講究録別冊

      Volume: 印刷中

    • NAID

      120007165854

    • Related Report
      2020 Research-status Report
  • [Journal Article] On upper bounds of Manin type2020

    • Author(s)
      Sho Tanimoto
    • Journal Title

      Algebra & Number Theory

      Volume: 14-3 Issue: 3 Pages: 731-762

    • DOI

      10.2140/ant.2020.14.751

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Campana points of bounded height on vector group compactifications2020

    • Author(s)
      Marta Pieropan, Arne Smeets, Sho Tanimoto, Anthony Varily-Alvarado
    • Journal Title

      Proceedings of the London Mathematical Society

      Volume: 印刷中

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Movable Bend and Break for sections of del Pezzo fibrations2020

    • Author(s)
      Sho Tanimoto
    • Journal Title

      第64回代数学シンポジウム報告集

      Volume: --

    • Related Report
      2019 Research-status Report
  • [Journal Article] Geometric Manin's conjecture and rational curves2019

    • Author(s)
      Brian Lehmann and Sho Tanimoto
    • Journal Title

      Compositio Mathematica

      Volume: v.155 no.5 Issue: 5 Pages: 833-862

    • DOI

      10.1112/s0010437x19007103

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On upper bounds of Manin type2019

    • Author(s)
      Sho Tanimoto
    • Journal Title

      Algebra & Number Theory

      Volume: 印刷中

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Some updates on thin exceptional sets in Manin’s conjecture2021

    • Author(s)
      Sho Tanimoto
    • Organizer
      the IML program “Number Theory: Rational points”
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Rational curves on del Pezzo surfaces in characteristic p2021

    • Author(s)
      谷本 祥
    • Organizer
      都の西北代数幾何学シンポジウム 2021, 早稲田大学
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Campana points, Height zeta functions, and log Manin's conjecture2020

    • Author(s)
      Sho Tanimoto
    • Organizer
      解析数論の展望と諸問題
    • Related Report
      2020 Research-status Report
  • [Presentation] Classifying rational curves on Fano threefolds2020

    • Author(s)
      Sho Tanimoto
    • Organizer
      The 19th Affine Algebraic Geometry Meeting
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Sections of del Pezzo fibrations over P^12019

    • Author(s)
      谷本 祥
    • Organizer
      Rational points on Fano and similar varieties
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Sections of del Pezzo fibrations over P^12019

    • Author(s)
      谷本 祥
    • Organizer
      Rationality problems in algebraic geometry
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Movable bend and break for sections of del Pezzo fibrations2019

    • Author(s)
      谷本 祥
    • Organizer
      第64回代数学シンポジウム
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] Sho Tanimoto's website

    • URL

      https://shotanimoto.wordpress.com

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
  • [Remarks] Sho Tanimoto

    • URL

      https://shotanimoto.wordpress.com

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi