• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of surfaces with singular points and singular metrics

Research Project

Project/Area Number 19K14533
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11020:Geometry-related
Research InstitutionHiroshima University (2021-2022)
Kyushu University (2019-2020)

Principal Investigator

Teramoto Keisuke  広島大学, 先進理工系科学研究科(理), 助教 (10830002)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsフロント / 焦面 / ガウス写像 / 特異点 / 混合型曲面 / フロンタル / 焦曲面 / ガウス曲率 / 主曲率 / リバクール変換 / 波面
Outline of Research at the Start

3次元ユークリッド空間内の特異点を持つ曲面に波面と呼ばれるクラスがある。波面は、特異点においてもガウス写像が定義できる。本研究では、ガウス写像に現れるカスプ特異点の持つ微分幾何学的性質を通して、対応する波面の微分幾何学的性質や位相的性質を明らかにすることを目的とする。また、波面の幾何学の研究手法と特異点論的手法を応用し、3次元ローレンツ多様体内のはめ込まれた曲面のクラスである混合型曲面の光的点(誘導計量の特異点)の周りにおける幾何学の基礎理論構築を目指す。

Outline of Final Research Achievements

For surfaces with certain singular points (fronts or frontals), we clarified singularities appearing on their focal surfaces and Gauss maps by using geometric properties of fronts. In particular, for cuspidal edges with bounded Gaussian curvature, we characterized the sign of the singular curvature and of the Gaussian curvature via singularities of the Gauss map. Moreover, we clarified the existence/ non-existence of singularities appearing on surfaces which are given by certain representation formulae. In addition, we gave characterizations of geometrical properties near singular points for such surfaces.
For surfaces with singular metric (mixed type surfaces) in Minkowski 3-space,
we observed contact of the image of lightlike points on that surfaces with lightcone. As a result, we defined two lightlike developable surfaces. For these lightlike developable surfaces, we characterized singularities of them by goemetric properties of corresponding mixed type surfaces.

Academic Significance and Societal Importance of the Research Achievements

近年、特異点を持つ曲面の微分幾何学的研究は急速に発展している。本研究では、波面やフロンタルという特異点を許容する曲面のクラスにおいて、外的な微分幾何学の研究を行った。これは、曲面のガウス写像やそれを用いて定義される曲面に現れる特異点を考察することで、初期曲面の幾何学的性質を明らかにできるという意義を持つ。この方法において、波面に対して新たな幾何学的性質を明らかにした。
また、3次元ミンコフスキー空間は不定値な計量を持つ空間であり、曲面が正則でもその誘導計量が退化する点を持ちうる。このような曲面に対しても、特異点論を用いることで、微分幾何学が展開できることを示した。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (20 results)

All 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (2 results) Journal Article (7 results) (of which Peer Reviewed: 7 results,  Open Access: 1 results) Presentation (11 results) (of which Int'l Joint Research: 3 results,  Invited: 8 results)

  • [Int'l Joint Research] サンパウロ州立大学(ブラジル)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] サンパウロ州立大学(ブラジル)

    • Related Report
      2021 Research-status Report
  • [Journal Article] Flat surfaces along swallowtails2022

    • Author(s)
      S. Izumiya, K. Saji, K. Teramoto
    • Journal Title

      Kobe J. Math

      Volume: 39

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On Gaussian curvatures and singularities of Gauss maps of cuspidal edges2021

    • Author(s)
      Teramoto Keisuke
    • Journal Title

      Portugaliae Mathematica

      Volume: 78 Issue: 2 Pages: 169-185

    • DOI

      10.4171/pm/2065

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Behavior of principal curvatures of frontals near non-front singular points and their applications2021

    • Author(s)
      Saji Kentaro、Teramoto Keisuke
    • Journal Title

      Journal of Geometry

      Volume: 112 Issue: 3

    • DOI

      10.1007/s00022-021-00605-3

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Geometry of lightlike locus on mixed type surfaces in Lorentz-Minkowski 3-space from a contact viewpoint2021

    • Author(s)
      Honda Atsufumi、Izumiya Shyuichi、Saji Kentaro、Teramoto Keisuke
    • Journal Title

      Tsukuba Journal of Mathematics

      Volume: 45 Issue: 1 Pages: 51-68

    • DOI

      10.21099/tkbjm/20214501051

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Geometric properties near singular points of surfaces given by certain representation formulae2021

    • Author(s)
      Matsushita Yoshiki、Nakashima Takuya、Teramoto Keisuke
    • Journal Title

      Publicationes Mathematicae Debrecen

      Volume: 99 Issue: 3-4 Pages: 331-354

    • DOI

      10.5486/pmd.2021.8904

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Singularities of Gauss maps of wave fronts with non-degenerate singular points2021

    • Author(s)
      Teramoto Keisuke
    • Journal Title

      Bulletin of the Polish Academy of Sciences Mathematics

      Volume: 69 Issue: 2 Pages: 149-169

    • DOI

      10.4064/ba200820-13-11

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Surfaces of Revolution of Frontals in the Euclidean Space2019

    • Author(s)
      Takahashi Masatomo、Teramoto Keisuke
    • Journal Title

      Bulletin of the Brazilian Mathematical Society, New Series

      Volume: - Issue: 4 Pages: 887-914

    • DOI

      10.1007/s00574-019-00180-x

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] ある表現公式で与えられる曲面の特異点と幾何学的性質について2023

    • Author(s)
      寺本圭佑
    • Organizer
      接触構造、特異点、微分方程式及びその周辺
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 擬球的曲面の焦面について2022

    • Author(s)
      寺本圭佑
    • Organizer
      第69回 幾何学シンポジウム
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 擬球的曲面の焦面について2022

    • Author(s)
      寺本 圭佑
    • Organizer
      横浜幾何学小研究会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] On caustics of pseudo-spheircal surfaces2022

    • Author(s)
      Keisuke Teramoto
    • Organizer
      On-demand conference Singularity theory and its application
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 波面の非有界な主曲率に関する焦曲面2021

    • Author(s)
      寺本 圭佑
    • Organizer
      特異点論の未来
    • Related Report
      2021 Research-status Report
  • [Presentation] 波面の焦曲面について2021

    • Author(s)
      寺本 圭佑
    • Organizer
      広島幾何学研究集会 2021 オンライン
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] ある表現公式で与えられる曲面の特異点における幾何学的性質について2021

    • Author(s)
      寺本圭佑
    • Organizer
      幾何や自然科学に現れる特異点
    • Related Report
      2020 Research-status Report
  • [Presentation] Behavior of principal curvatures of frontals near non-front singular points2020

    • Author(s)
      Keisuke Teramoto
    • Organizer
      The 16th International Workshop on Real and Complex Singularity Theory
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] カスプ辺のガウス曲率とガウス写像の特異性について2020

    • Author(s)
      寺本圭佑
    • Organizer
      部分多様体論オンライン2020
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Duality of geometric invariants on cuspidal edges on flat fronts in the hyperbolic 3-space and the de Sitter 3-space2019

    • Author(s)
      寺本 圭佑
    • Organizer
      Workshop on Submanifold theory in a wider sense
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Behavior of the Gaussian curvature and singularities of Gauss map of cuspidal edges2019

    • Author(s)
      keisuke Teramoto
    • Organizer
      Brazilian-Japanese singularity days at Unesp/Rio Preto
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi