• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Ricci solitons, Yamabe solitons and a generalization of minimal submanifolds

Research Project

Project/Area Number 19K14534
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11020:Geometry-related
Research InstitutionChiba University (2021-2022)
Shimane University (2019-2020)

Principal Investigator

Maeta Shun  千葉大学, 教育学部, 准教授 (00709644)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords山辺ソリトン / コンフォーマルソリトン / リッチ曲率 / ヘッセ多様体 / ヘッセフロー / ヘッセソリトン / 部分多様体 / 双対空間 / 回転対称 / ペレリマン予想 / ポテンシャル関数 / 擬ユークリッド空間 / ヘッセアインシュタイン多様体 / リッチソリトン / アインシュタイン多様体 / rectifiable / 極小部分多様体 / 極小部分多様体の一般化
Outline of Research at the Start

研究目的である,完備安定勾配リッチソリトン及び山辺ソリトンの分類及び部分多様体としてのリッチソリトン,山辺ソリトンの分類のために,これまで一貫して研究してきた,極小部分多様体の一般化のアイディアを用いる。本研究では特に,これまで3次元に対して研究してきたものを高次元に拡張する研究と,部分多様体としてのリッチソリトン及び山辺ソリトンに極小部分多様体の一般化のアイディアを直接用いて部分多様体を分類する研究を行う。

Outline of Final Research Achievements

I showed the following:
1.Steady or shrinking complete gradient Yamabe solitons with finite total scalar curvature and non-positive Ricci curvature are Ricci flat. 2. I classified 3-dimensional complete gradient Yamabe solitons with divergence-free Cotton tensor. 3. Any conformal soliton on a hypersurface in a Euclidean space arisen from the position vector field is contained in a hyperplane, a conic hypersurface or a hypersphere. 4. I defined a Hesse soliton, that is, a self-similar solution to the Hesse flow on Hessian manifolds and showed that any compact proper Hesse soliton is expanding and any non-trivial compact gradient Hesse soliton is proper. Furthermore, I showed that the dual space of a Hesse-Einstein manifold can be understood as a Hesse soliton.

Academic Significance and Societal Importance of the Research Achievements

幾何学的フローはポアンカレ予想を含むサーストンの幾何化予想解決に用いられた非常に強力な手法であり,その自己相似解は重要な役割を担う.本研究は幾何学的フローの自己相似解を研究し,いくつかの分類定理を与えたことに意義がある.また,情報幾何で用いられるヘッセ多様体上の幾何学的フローに対して,その自己相似解といくつかの分類を与えたことに意義がある.

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (16 results)

All 2022 2021 2020 2019 Other

All Int'l Joint Research (1 results) Journal Article (8 results) (of which Peer Reviewed: 5 results,  Open Access: 3 results) Presentation (4 results) (of which Invited: 3 results) Remarks (3 results)

  • [Int'l Joint Research] Fatih Sultan Mehmet Vakif University(トルコ)

    • Related Report
      2022 Annual Research Report
  • [Journal Article] Structure of gradient conformal solitons and its applications2022

    • Author(s)
      Shun Maeta
    • Journal Title

      arXiv

      Volume: 2208.09162

    • Related Report
      2022 Annual Research Report
  • [Journal Article] Triharmonic Riemannian submersions from 3-dimensional space forms2021

    • Author(s)
      Tomoya MIura and Shun Maeta
    • Journal Title

      Advances in Geometry

      Volume: 21 Issue: 2 Pages: 163-168

    • DOI

      10.1515/advgeom-2020-0033

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Biharmonic hypersurfaces in a product spaceLm×R2021

    • Author(s)
      Yu Fu, Shun Maeta and Ye-Lin Ou
    • Journal Title

      Mathematische Nachrichten

      Volume: 294 Issue: 9 Pages: 1724-1741

    • DOI

      10.1002/mana.201900457

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Self-similar solutions to the Hesse flow2021

    • Author(s)
      Maeta Shun
    • Journal Title

      Information Geometry

      Volume: 4 Issue: 2 Pages: 313-327

    • DOI

      10.1007/s41884-021-00054-6

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Classification of generalized Yamabe solitons in Euclidean spaces2021

    • Author(s)
      Fujii Shunya、Maeta Shun
    • Journal Title

      International Journal of Mathematics

      Volume: 32 Issue: 04 Pages: 2150022-2150022

    • DOI

      10.1142/s0129167x21500221

    • Related Report
      2020 Research-status Report
  • [Journal Article] Three-dimensional complete gradient Yamabe solitons with divergence-free Cotton tensor2020

    • Author(s)
      Maeta Shun
    • Journal Title

      Annals of Global Analysis and Geometry

      Volume: 58 Issue: 2 Pages: 227-237

    • DOI

      10.1007/s10455-020-09722-9

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Some classifications of biharmonic hypersurfaces with constant scalar curvature2020

    • Author(s)
      Maeta Shun、Ou Ye-Lin
    • Journal Title

      Pacific Journal of Mathematics

      Volume: 306 Issue: 1 Pages: 281-290

    • DOI

      10.2140/pjm.2020.306.281

    • Related Report
      2020 Research-status Report
  • [Journal Article] Complete Yamabe solitons with finite total scalar curvature2019

    • Author(s)
      Shun Maeta
    • Journal Title

      Differential Geometry and its Applications

      Volume: 66 Pages: 75-81

    • DOI

      10.1016/j.difgeo.2019.05.007

    • NAID

      120007038033

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] ある種の勾配山辺ソリトンとその一般化に対する分類について2022

    • Author(s)
      前田 瞬
    • Organizer
      部分多様体論と幾何解析の新展開
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 山辺ソリトンの一般化に対する分類定理とその応用2022

    • Author(s)
      前田 瞬
    • Organizer
      多様体上の微分方程式
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] ある種の3次元リッチソリトンと山辺ソリトンの分類について2020

    • Author(s)
      前田瞬
    • Organizer
      筑波大学微分幾何学セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] divergence-free コットンテンソルを持つ 3 次元完備勾配山辺ソリトン2020

    • Author(s)
      前田瞬
    • Organizer
      日本数学会 2020 年度年会
    • Related Report
      2020 Research-status Report
  • [Remarks] Shun Maeta's Home Page

    • URL

      https://sites.google.com/site/shunmaetahomepage

    • Related Report
      2022 Annual Research Report
  • [Remarks] Shun Maeta's Home Page

    • URL

      https://sites.google.com/site/shunmaetahomepage/home?authuser=0

    • Related Report
      2021 Research-status Report
  • [Remarks] Shun Maeta's Home Page

    • URL

      https://sites.google.com/site/shunmaetahomepage/home

    • Related Report
      2020 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi